We obtain the Raman spectrum of Cl2(l) vibration by excitation with radiation from a Hg lamp with a wavelength of 4358.25 Å. In this way we obtain a Stokes line at 4466.5 Å which is very intense. Calculate the wave number of the fundamental vibration of the chlorine molecule and the bond strength constant (we will assume that it is a harmonic vibration).Data: h = 6.626x10-34J s; c = 2.998x108 m s-1, NA = 6.022x1023 mol-1; relative atomic mass of Cl = 35.45.
We obtain the Raman spectrum of Cl2(l) vibration by excitation with radiation from a Hg lamp with a wavelength of 4358.25 Å. In this way we obtain a Stokes line at 4466.5 Å which is very intense. Calculate the wave number of the fundamental vibration of the chlorine molecule and the bond strength constant (we will assume that it is a harmonic vibration).Data: h = 6.626x10-34J s; c = 2.998x108 m s-1, NA = 6.022x1023 mol-1; relative atomic mass of Cl = 35.45.
Physical Chemistry
2nd Edition
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Ball, David W. (david Warren), BAER, Tomas
Chapter14: Rotational And Vibrational Spectroscopy
Section: Chapter Questions
Problem 14.61E
Related questions
Question
100%
We obtain the Raman spectrum of Cl2(l) vibration by excitation with radiation from a Hg lamp with a wavelength of 4358.25 Å. In this way we obtain a Stokes line at 4466.5 Å which is very intense. Calculate the wave number of the fundamental vibration of the chlorine molecule and the bond strength constant (we will assume that it is a harmonic vibration).
Data: h = 6.626x10-34J s; c = 2.998x108 m s-1, NA = 6.022x1023 mol-1; relative
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
Unlock instant AI solutions
Tap the button
to generate a solution
Recommended textbooks for you
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning