i. To allocate 40 units between two periods in a dynamic efficient allocation, we need to find the optimal quantities that equate the present value of marginal net benefits (MNB) in each period. Given the inverse demand function P = 25-0.4q and the marginal supply cost of £5, the marginal net benefit in period t is MNBT (25-0.4qt-5)(1 + r)t-1. The dynamic efficient allocation must satisfy the necessary condition PV(MNB1) = PV(MNB2)=λ, where A is the present value of marginal user cost. Let q1 and q2 be the quantities allocated to periods 1 and 2, respectively. Then, the present value of marginal net benefits in each period is: = PV(MNB1) (25-0.4q1-5) (1+r) PV(MNB2) (25-0.4q2 -5) Since PV(MNB1) = PV(MNB2) = λ, we have: (25-0.4q1-5)(1+r) = 25-0.4q2 - 5 =λ Solving this system of equations, we get: q1= 14.44 (rounded to two decimal places) q2=25.56 (rounded to two decimal places) Transcribed Image Text: Suppose the inverse demand function for a depletable resource is linear, P = 25 - 0.4q, and the marginal supply cost is constant at £5. i. If 40 units are to be allocated between two periods in a dynamic efficient allocation, how much would be allocated to period 1 and how much to period 2 when the discount rate is r = 0.15? Show your working

Principles of Economics 2e
2nd Edition
ISBN:9781947172364
Author:Steven A. Greenlaw; David Shapiro
Publisher:Steven A. Greenlaw; David Shapiro
Chapter7: Production, Costs, And Industry Structure
Section: Chapter Questions
Problem 11RQ: What is die difference between accounting and economic profit?
icon
Related questions
Question

In the answer below to my question which is also attached, how is the equation solved? r is given but i don't see how you can solve for q1 and q2 with the equation (25-0.4q1-5)(1+r) = 25-0.4q2 -5 = λ

i. To allocate 40 units between two periods in a dynamic efficient allocation, we need to find the optimal
quantities that equate the present value of marginal net benefits (MNB) in each period. Given the inverse
demand function P = 25-0.4q and the marginal supply cost of £5, the marginal net benefit in period t is
MNBT (25-0.4qt-5)(1 + r)t-1. The dynamic efficient allocation must satisfy the necessary condition
PV(MNB1) = PV(MNB2)=λ, where A is the present value of marginal user cost.
Let q1 and q2 be the quantities allocated to periods 1 and 2, respectively. Then, the present value of
marginal net benefits in each period is:
=
PV(MNB1) (25-0.4q1-5) (1+r)
PV(MNB2) (25-0.4q2 -5)
Since PV(MNB1) = PV(MNB2) = λ, we have:
(25-0.4q1-5)(1+r) = 25-0.4q2 - 5 =λ
Solving this system of equations, we get:
q1= 14.44 (rounded to two decimal places)
q2=25.56 (rounded to two decimal places)
Transcribed Image Text:i. To allocate 40 units between two periods in a dynamic efficient allocation, we need to find the optimal quantities that equate the present value of marginal net benefits (MNB) in each period. Given the inverse demand function P = 25-0.4q and the marginal supply cost of £5, the marginal net benefit in period t is MNBT (25-0.4qt-5)(1 + r)t-1. The dynamic efficient allocation must satisfy the necessary condition PV(MNB1) = PV(MNB2)=λ, where A is the present value of marginal user cost. Let q1 and q2 be the quantities allocated to periods 1 and 2, respectively. Then, the present value of marginal net benefits in each period is: = PV(MNB1) (25-0.4q1-5) (1+r) PV(MNB2) (25-0.4q2 -5) Since PV(MNB1) = PV(MNB2) = λ, we have: (25-0.4q1-5)(1+r) = 25-0.4q2 - 5 =λ Solving this system of equations, we get: q1= 14.44 (rounded to two decimal places) q2=25.56 (rounded to two decimal places)
Transcribed Image Text: Suppose the inverse demand
function for a depletable resource is linear, P = 25 - 0.4q, and
the marginal supply cost is constant at £5. i. If 40 units are to
be allocated between two periods in a dynamic efficient
allocation, how much would be allocated to period 1 and how
much to period 2 when the discount rate is r = 0.15? Show
your working
Transcribed Image Text:Transcribed Image Text: Suppose the inverse demand function for a depletable resource is linear, P = 25 - 0.4q, and the marginal supply cost is constant at £5. i. If 40 units are to be allocated between two periods in a dynamic efficient allocation, how much would be allocated to period 1 and how much to period 2 when the discount rate is r = 0.15? Show your working
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Economics 2e
Principles of Economics 2e
Economics
ISBN:
9781947172364
Author:
Steven A. Greenlaw; David Shapiro
Publisher:
OpenStax
Microeconomics: Principles & Policy
Microeconomics: Principles & Policy
Economics
ISBN:
9781337794992
Author:
William J. Baumol, Alan S. Blinder, John L. Solow
Publisher:
Cengage Learning
Exploring Economics
Exploring Economics
Economics
ISBN:
9781544336329
Author:
Robert L. Sexton
Publisher:
SAGE Publications, Inc
Microeconomics: Private and Public Choice (MindTa…
Microeconomics: Private and Public Choice (MindTa…
Economics
ISBN:
9781305506893
Author:
James D. Gwartney, Richard L. Stroup, Russell S. Sobel, David A. Macpherson
Publisher:
Cengage Learning
Economics: Private and Public Choice (MindTap Cou…
Economics: Private and Public Choice (MindTap Cou…
Economics
ISBN:
9781305506725
Author:
James D. Gwartney, Richard L. Stroup, Russell S. Sobel, David A. Macpherson
Publisher:
Cengage Learning
Micro Economics For Today
Micro Economics For Today
Economics
ISBN:
9781337613064
Author:
Tucker, Irvin B.
Publisher:
Cengage,