E[(X - m)+] ≤ √σ² + (m − µ)² - (m - µ) - 2

Microeconomic Theory
12th Edition
ISBN:9781337517942
Author:NICHOLSON
Publisher:NICHOLSON
Chapter2: Mathematics For Microeconomics
Section: Chapter Questions
Problem 2.6P
icon
Related questions
Question

Prove the following result in the derivation of the asymptotic optimality of the bid-price control policy. Let X be a random variable with finite first and second order moments, i.e., E[X] = µ < +∞, E[(X − E[X])^2] = σ^2 < +∞. Let x+ = max{x, 0}. Prove the following: ∀m ∈ R,
E[(X − m)+] ≤ (√ (σ2 + (m − µ)^2) − (m − µ))/2.
Hint: You can without loss of generality let m = 0

E[(X - m)+] ≤
√σ² + (m − µ)² - (m - µ)
-
2
Transcribed Image Text:E[(X - m)+] ≤ √σ² + (m − µ)² - (m - µ) - 2
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Microeconomic Theory
Microeconomic Theory
Economics
ISBN:
9781337517942
Author:
NICHOLSON
Publisher:
Cengage
Economics (MindTap Course List)
Economics (MindTap Course List)
Economics
ISBN:
9781337617383
Author:
Roger A. Arnold
Publisher:
Cengage Learning
Microeconomics
Microeconomics
Economics
ISBN:
9781337617406
Author:
Roger A. Arnold
Publisher:
Cengage Learning
Managerial Economics: Applications, Strategies an…
Managerial Economics: Applications, Strategies an…
Economics
ISBN:
9781305506381
Author:
James R. McGuigan, R. Charles Moyer, Frederick H.deB. Harris
Publisher:
Cengage Learning
Managerial Economics: A Problem Solving Approach
Managerial Economics: A Problem Solving Approach
Economics
ISBN:
9781337106665
Author:
Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:
Cengage Learning
EBK HEALTH ECONOMICS AND POLICY
EBK HEALTH ECONOMICS AND POLICY
Economics
ISBN:
9781337668279
Author:
Henderson
Publisher:
YUZU