This problem set deals with the problem of non-constant acceleration. Two researchers from Fly By Night Industries conduct an experiment with a sports car on a test track. While one is driving the car, the other will look at the speedometer and record the speed of the car at one- second intervals. Now, these aren't official researchers and this isn't an official test track, so the speeds are in miles per hour using an analog speedometer. The data set they create is: {(1,5), (2, z), (3, 30), (4, 50), (5, 65), (6, 70)} Z = 25 They notice that the acceleration is not a constant value. They decide that a fourth-degree polynomial will be the best to describe the speed of the car as a function of time. The task here is to determine the fourth-degree polynomial that fits this data set the best. 1. Use a general fourth-degree polynomial and Fly By Night's data to construct six equations. Note that the equations are linear in the coefficients. Write the equations here: 2. Construct the least-squares problem Ax = b. A = b =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
This problem set deals with the problem of non-constant acceleration. Two researchers from
Fly By Night Industries conduct an experiment with a sports car on a test track. While one is
driving the car, the other will look at the speedometer and record the speed of the car at one-
second intervals. Now, these aren't official researchers and this isn't an official test track, so
the speeds are in miles per hour using an analog speedometer. The data set they create is:
{(1,5), (2, z), (3, 30), (4, 50), (5, 65), (6, 70)}
Z = 25
They notice that the acceleration is not a constant value. They decide that a fourth-degree
polynomial will be the best to describe the speed of the car as a function of time.
The task here is to determine the fourth-degree polynomial that fits this data set the best.
1. Use a general fourth-degree polynomial and Fly By Night's data to construct six
equations. Note that the equations are linear in the coefficients. Write the equations
here:
2. Construct the least-squares problem Ax = b.
A =
b =
Transcribed Image Text:This problem set deals with the problem of non-constant acceleration. Two researchers from Fly By Night Industries conduct an experiment with a sports car on a test track. While one is driving the car, the other will look at the speedometer and record the speed of the car at one- second intervals. Now, these aren't official researchers and this isn't an official test track, so the speeds are in miles per hour using an analog speedometer. The data set they create is: {(1,5), (2, z), (3, 30), (4, 50), (5, 65), (6, 70)} Z = 25 They notice that the acceleration is not a constant value. They decide that a fourth-degree polynomial will be the best to describe the speed of the car as a function of time. The task here is to determine the fourth-degree polynomial that fits this data set the best. 1. Use a general fourth-degree polynomial and Fly By Night's data to construct six equations. Note that the equations are linear in the coefficients. Write the equations here: 2. Construct the least-squares problem Ax = b. A = b =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,