The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration KG=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 0-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 8=0°. The spring's length at the state 2 is L2=4 m. (7) The instantaneous center of zero velocity (IC) is L₂ State 2 O A Point A B. Point O O C. Point G H State 1
-
The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m.
(7) The instantaneous center of zero velocity (IC) is
A. Point A
B. Point O
C. Point G
![The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the
wheel is 0.6m. The radius of gyration KG=0.4 m. The spring's unstretched length is Lo=1.0 m.
The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the
state 1 when the angle between the spring and the vertical direction is 0-30°. The wheel
rolls without slipping and passes the position at the state 2 when the angle is 8=0°. The
spring's length at the state 2 is L2=4 m.
(7) The instantaneous center of zero velocity (IC) is
L₂
State 2
O A Point A
B. Point O
O C. Point G
H
State 1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F72d490d0-ea92-4353-8b1a-fc4847a9a9b3%2F1083d9c4-d775-4d4e-bc33-d6c09c5af356%2F86qwdjl_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
could you help with more of these questions? There are about 10 of them but they all keep getting rejected for some reason. Here is an example of one:
![The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the
wheel is 0.6m. The radius of gyration KG=0.4 m. The spring's unstretched length is Lo=1.0 m.
The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the
state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls
without slipping and passes the position at the state 2 when the angle is 8=0°. The spring's
length at the state 2 is L2=4 m.
(1) If the mass center G is set as the origin (datum), the gravitational potential energy at the
state 1 is_____ (two decimal places)
1116441
L₂
State 2
State 1](https://content.bartleby.com/qna-images/question/72d490d0-ea92-4353-8b1a-fc4847a9a9b3/54ba81b0-5152-411b-831d-5549eff8563e/isye6wq_thumbnail.png)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)