The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration ke=0.4 m. The spring's unstretched length is Lo=1.0 m. The stiffness coefficient of the spring is k-2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is 8-30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is 0=0°. The spring's length at the state 2 is L2=4 m. (4) The elastic potential energy at the potion 1 is_ HULKU 2₂ State 2 G m State 1 (N-m) (two decimal places)
The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m.
(4) The elastic potential energy at the potion 1 is_______(N·m) (two decimal places)
Given Data:
Mass of Wheel
Radius of Wheel
Radius of gyration
Unstretched length of spring
Stiffness coefficient of spring
The angle between the spring and vertical direction
Length of spring at state 2
Step by step
Solved in 3 steps with 1 images