The reservoir tank shown contains fresh water air pressurized to 200 kPa. There is a loss of 3.3 N*m/N due to friction in the pipes. Point 1 is located at the surface of the water and point 2 is in the free stream of the exit spray. The Distance from the water surface to the free stream is 3 meters. The flowrate for the system is .05 m^3/s (Work on paper required) 1. How much energy is provided to the motor by the flowing water? 2. Assuming the motor has an efficiency rating of 83%, how much power is output? Ar Pressure o water DN 50sch 40 motor DN 8D sch 40

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
The reservoir tank shown contains fresh water air pressurized to 200 kPa. There is a loss of 3.3
N*m/N due to friction in the pipes. Point 1 is located at the surface of the water and point 2 is in the
free stream of the exit spray. The Distance from the water surface to the free stream is 3 meters.
The flowrate for the system is .05 m^3/s (Work on paper required)
1. How much energy is provided to the motor by the flowing water?
2. Assuming the motor has an efficiency rating of 83%, how much power is output?
Ar Pressure o
water
DN 50sch 40
motor
r coo
ON 80 sch 40
Transcribed Image Text:The reservoir tank shown contains fresh water air pressurized to 200 kPa. There is a loss of 3.3 N*m/N due to friction in the pipes. Point 1 is located at the surface of the water and point 2 is in the free stream of the exit spray. The Distance from the water surface to the free stream is 3 meters. The flowrate for the system is .05 m^3/s (Work on paper required) 1. How much energy is provided to the motor by the flowing water? 2. Assuming the motor has an efficiency rating of 83%, how much power is output? Ar Pressure o water DN 50sch 40 motor r coo ON 80 sch 40
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Fluid Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY