The moment of inertia of a uniform-density disk rotating about an axle through its center can be shown to be MR. This result is obtained by using integral calculus to add up the contributions of all the atoms in the disk. The factor of 1/2 reflects the fact that some of the atoms are near the center and some are far from the center; the factor of 1/2 is an average of the square distances. A uniform- density disk whose mass is 18 kg and radius is 0.12 m makes one complete rotation every 0.4 s.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
The moment of inertia of a uniform-density disk rotating about an axle through its center can be shown to be-
. This result is
obtained by using integral calculus to add up the contributions of all the atoms in the disk. The factor of 1/2 reflects the fact that some
of the atoms are near the center and some are far from the center; the factor of 1/2 is an average of the square distances. A uniform-
density disk whose mass is 18 kg and radius is 0.12 m makes one complete rotation every 0.4 s.
Transcribed Image Text:The moment of inertia of a uniform-density disk rotating about an axle through its center can be shown to be- . This result is obtained by using integral calculus to add up the contributions of all the atoms in the disk. The factor of 1/2 reflects the fact that some of the atoms are near the center and some are far from the center; the factor of 1/2 is an average of the square distances. A uniform- density disk whose mass is 18 kg and radius is 0.12 m makes one complete rotation every 0.4 s.
Part 3
(c) What is the magnitude of its rotational angular momentum?
i
kg - m2/s
eTextbook and Media
Save for Later
Attempts: 0 of 4 used
Submit Answer
Transcribed Image Text:Part 3 (c) What is the magnitude of its rotational angular momentum? i kg - m2/s eTextbook and Media Save for Later Attempts: 0 of 4 used Submit Answer
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
The boltzmann Factor
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON