In Lagrangian mechanics, the Lagrangian technique tells us that when dealing with particles or rigid bodies that can be treated as particles, the Lagrangian can be defined as: L = T-V where T is the kinetic energy of the particle, and V the potential energy of the particle. It is also advised to start with Cartesian coordinates when expressing the kinetic energy and potential energy components of the Lagrangian e.g. T = ½ m (x² + y² + ż²). To express the kinetic energy and potential energy in some other coordinate system requires a set of transformation equations. 3.1 Taking into consideration the information given above, show that the Lagrangian for a pendulum of length 1, mass m, free to with angular displacement - i.e. angle between the string and the perpendicular is given by: L=T-V=1²2 8² +mg | Cos
In Lagrangian mechanics, the Lagrangian technique tells us that when dealing with particles or rigid bodies that can be treated as particles, the Lagrangian can be defined as: L = T-V where T is the kinetic energy of the particle, and V the potential energy of the particle. It is also advised to start with Cartesian coordinates when expressing the kinetic energy and potential energy components of the Lagrangian e.g. T = ½ m (x² + y² + ż²). To express the kinetic energy and potential energy in some other coordinate system requires a set of transformation equations. 3.1 Taking into consideration the information given above, show that the Lagrangian for a pendulum of length 1, mass m, free to with angular displacement - i.e. angle between the string and the perpendicular is given by: L=T-V=1²2 8² +mg | Cos
Related questions
Question
![14:06
Done
5
In Lagrangian mechanics, the Lagrangian technique tells us that when dealing with
particles or rigid bodies that can be treated as particles, the Lagrangian can be defined
as:
L = T-V where T is the kinetic energy of the particle, and V the potential energy of the
particle. It is also advised to start with Cartesian coordinates when expressing the
kinetic energy and potential energy components of the Lagrangian
e.g. T = ¹½ m (x² + y² + 2²). To express the kinetic energy and potential energy in
some other coordinate system requires a set of transformation equations.
3.1
Taking into consideration the information given above, show that the Lagrangian
for a pendulum of length 1, mass m, free to with angular displacement 0- i.e.
angle between the string and the perpendicular is given by:
L=T-V=2²² +mg | Cos
и
4G
15
un](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0e2c7b54-ba7a-42c7-9b7d-0607e8d61e9c%2F3e118f86-6565-475e-977d-f3a2e2df9d1a%2Fx9dnvlh_processed.png&w=3840&q=75)
Transcribed Image Text:14:06
Done
5
In Lagrangian mechanics, the Lagrangian technique tells us that when dealing with
particles or rigid bodies that can be treated as particles, the Lagrangian can be defined
as:
L = T-V where T is the kinetic energy of the particle, and V the potential energy of the
particle. It is also advised to start with Cartesian coordinates when expressing the
kinetic energy and potential energy components of the Lagrangian
e.g. T = ¹½ m (x² + y² + 2²). To express the kinetic energy and potential energy in
some other coordinate system requires a set of transformation equations.
3.1
Taking into consideration the information given above, show that the Lagrangian
for a pendulum of length 1, mass m, free to with angular displacement 0- i.e.
angle between the string and the perpendicular is given by:
L=T-V=2²² +mg | Cos
и
4G
15
un
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)