In Lagrangian mechanics, the Lagrangian technique tells us that when dealing with particles or rigid bodies that can be treated as particles, the Lagrangian can be defined as: L = T-V where T is the kinetic energy of the particle, and V the potential energy of the particle. It is also advised to start with Cartesian coordinates when expressing the kinetic energy and potential energy components of the Lagrangian e.g. T = ½ m (x² + y² + ż²). To express the kinetic energy and potential energy in some other coordinate system requires a set of transformation equations. 3.1 Taking into consideration the information given above, show that the Lagrangian for a pendulum of length 1, mass m, free to with angular displacement - i.e. angle between the string and the perpendicular is given by: L=T-V=1²2 8² +mg | Cos

icon
Related questions
Question
14:06
Done
5
In Lagrangian mechanics, the Lagrangian technique tells us that when dealing with
particles or rigid bodies that can be treated as particles, the Lagrangian can be defined
as:
L = T-V where T is the kinetic energy of the particle, and V the potential energy of the
particle. It is also advised to start with Cartesian coordinates when expressing the
kinetic energy and potential energy components of the Lagrangian
e.g. T = ¹½ m (x² + y² + 2²). To express the kinetic energy and potential energy in
some other coordinate system requires a set of transformation equations.
3.1
Taking into consideration the information given above, show that the Lagrangian
for a pendulum of length 1, mass m, free to with angular displacement 0- i.e.
angle between the string and the perpendicular is given by:
L=T-V=2²² +mg | Cos
и
4G
15
un
Transcribed Image Text:14:06 Done 5 In Lagrangian mechanics, the Lagrangian technique tells us that when dealing with particles or rigid bodies that can be treated as particles, the Lagrangian can be defined as: L = T-V where T is the kinetic energy of the particle, and V the potential energy of the particle. It is also advised to start with Cartesian coordinates when expressing the kinetic energy and potential energy components of the Lagrangian e.g. T = ¹½ m (x² + y² + 2²). To express the kinetic energy and potential energy in some other coordinate system requires a set of transformation equations. 3.1 Taking into consideration the information given above, show that the Lagrangian for a pendulum of length 1, mass m, free to with angular displacement 0- i.e. angle between the string and the perpendicular is given by: L=T-V=2²² +mg | Cos и 4G 15 un
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer