In the simple kinetic theory of a gas we discussed in class, the molecules are assumed to be point-like objects (without any volume) so that they rarely collide with one another. In reality, each molecule has a small volume and so there are collisions. Let's assume that a molecule is a hard sphere of radius r. Then the molecules will occasionally collide with each other. The average distance traveled between two successive collisions (called mean free path) is λ = V/(4π √2 r2N) where V is the volume of the gas containing N molecules. Calculate the mean free path of a H2 molecule in a hydrogen gas tank at STP. Assume the molecular radius to be 10-10 a) 2.1*10-7 m b) 4.2*10-7 m c) none of these.
In the simple kinetic theory of a gas we discussed in class, the molecules are assumed to be point-like objects (without any volume) so that they rarely collide with one another. In reality, each molecule has a small volume and so there are collisions. Let's assume that a molecule is a hard sphere of radius r. Then the molecules will occasionally collide with each other. The average distance traveled between two successive collisions (called mean free path) is λ = V/(4π √2 r2N) where V is the volume of the gas containing N molecules. Calculate the mean free path of a H2 molecule in a hydrogen gas tank at STP. Assume the molecular radius to be 10-10
a) 2.1*10-7 m
b) 4.2*10-7 m
c) none of these.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps