The freezing point of water H₂O is 0.00 °C at 1 atmosphere. A nonvolatile, nonelectrolyte that dissolves in water is glucose. How many grams of glucose, C6H12O6 (180.2 g/mol), must be dissolved in 218.0 grams of water to reduce the freezing point by 0.350 °C? Refer to the table for the necessary boiling or freezing point constant. Solvent Formula Kb (°C/m) Kf(°C/m) Water H₂O 0.512 Ethanol CH3 CH₂OH 1.22 Chloroform CHC13 3.67 Benzene C6H6 2.53 Diethyl ether CH3 CH₂ OCH₂ CH3 2.02 Mass= g 1.86 1.99 5.12
The freezing point of water H₂O is 0.00 °C at 1 atmosphere. A nonvolatile, nonelectrolyte that dissolves in water is glucose. How many grams of glucose, C6H12O6 (180.2 g/mol), must be dissolved in 218.0 grams of water to reduce the freezing point by 0.350 °C? Refer to the table for the necessary boiling or freezing point constant. Solvent Formula Kb (°C/m) Kf(°C/m) Water H₂O 0.512 Ethanol CH3 CH₂OH 1.22 Chloroform CHC13 3.67 Benzene C6H6 2.53 Diethyl ether CH3 CH₂ OCH₂ CH3 2.02 Mass= g 1.86 1.99 5.12
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![**Boiling Point Elevation/Freezing Point Depression**
\[ \Delta T = m \, K \]
- **For freezing point depression:**
\[ \Delta T = T(\text{pure solvent}) - T(\text{solution}) \]
- **For boiling point elevation:**
\[ \Delta T = T(\text{solution}) - T(\text{pure solvent}) \]
Where:
- \( m = \) (# moles solute / Kg solvent)
- \( K_b = \) boiling point elevation constant
- \( K_f = \) freezing point depression constant
\( K_b \) and \( K_f \) depend only on the SOLVENT. Below are some common values. Use these values for the calculations that follow.
| Solvent | Formula | \( K_b (°C / m) \) | \( K_f (°C / m) \) |
|--------------|----------------|------------------|------------------|
| Water | H\(_2\)O | 0.512 | 1.86 |
| Ethanol | CH\(_3\)CH\(_2\)OH | 1.22 | 1.99 |
| Chloroform | CHCl\(_3\) | 3.67 | - |
| Benzene | C\(_6\)H\(_6\) | 2.53 | 5.12 |
| Diethyl ether| CH\(_3\)CH\(_2\)OCH\(_2\)CH\(_3\) | 2.02 | - |](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5e64e050-9cb6-467e-8132-ec94d7497579%2F99202ff5-67a1-4f42-9834-a90e11c4f45a%2Fcr9stsj_processed.png&w=3840&q=75)
Transcribed Image Text:**Boiling Point Elevation/Freezing Point Depression**
\[ \Delta T = m \, K \]
- **For freezing point depression:**
\[ \Delta T = T(\text{pure solvent}) - T(\text{solution}) \]
- **For boiling point elevation:**
\[ \Delta T = T(\text{solution}) - T(\text{pure solvent}) \]
Where:
- \( m = \) (# moles solute / Kg solvent)
- \( K_b = \) boiling point elevation constant
- \( K_f = \) freezing point depression constant
\( K_b \) and \( K_f \) depend only on the SOLVENT. Below are some common values. Use these values for the calculations that follow.
| Solvent | Formula | \( K_b (°C / m) \) | \( K_f (°C / m) \) |
|--------------|----------------|------------------|------------------|
| Water | H\(_2\)O | 0.512 | 1.86 |
| Ethanol | CH\(_3\)CH\(_2\)OH | 1.22 | 1.99 |
| Chloroform | CHCl\(_3\) | 3.67 | - |
| Benzene | C\(_6\)H\(_6\) | 2.53 | 5.12 |
| Diethyl ether| CH\(_3\)CH\(_2\)OCH\(_2\)CH\(_3\) | 2.02 | - |
![### Freezing Point Depression Example
The freezing point of water \( \text{H}_2\text{O} \) is 0.00 °C at 1 atmosphere. A nonvolatile, nonelectrolyte solute that dissolves in water is glucose.
**Problem:**
How many grams of glucose, \( \text{C}_6\text{H}_{12}\text{O}_6 \) (180.2 g/mol), must be dissolved in 218.0 grams of water to reduce the freezing point by 0.350 °C? Refer to the table for the necessary boiling or freezing point constant.
**Table: Freezing and Boiling Point Constants**
The table below shows various solvents along with their chemical formulas and constants:
| Solvent | Formula | \( K_b \) (°C/m) | \( K_f \) (°C/m) |
|---------------|----------------------|------------------|------------------|
| Water | \( \text{H}_2\text{O} \) | 0.512 | 1.86 |
| Ethanol | \( \text{CH}_3\text{CH}_2\text{OH} \) | 1.22 | 1.99 |
| Chloroform | \( \text{CHCl}_3 \) | 3.67 | |
| Benzene | \( \text{C}_6\text{H}_6 \) | 2.53 | 5.12 |
| Diethyl ether | \( \text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3 \) | 2.02 | |
### Calculate
To calculate the mass of glucose needed, use the freezing point depression formula:
\[
\Delta T_f = i \times K_f \times m
\]
Where:
- \( \Delta T_f \) is the change in freezing point (0.350 °C)
- \( i \) is the van't Hoff factor (1 for glucose since it doesn’t dissociate)
- \( K_f \) is the freezing point depression constant for water (1.86 °C/m)
- \( m \) is the molality of the solution
**Calculate the molality (\( m \)):**
Re](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5e64e050-9cb6-467e-8132-ec94d7497579%2F99202ff5-67a1-4f42-9834-a90e11c4f45a%2Fzjxdbsm_processed.png&w=3840&q=75)
Transcribed Image Text:### Freezing Point Depression Example
The freezing point of water \( \text{H}_2\text{O} \) is 0.00 °C at 1 atmosphere. A nonvolatile, nonelectrolyte solute that dissolves in water is glucose.
**Problem:**
How many grams of glucose, \( \text{C}_6\text{H}_{12}\text{O}_6 \) (180.2 g/mol), must be dissolved in 218.0 grams of water to reduce the freezing point by 0.350 °C? Refer to the table for the necessary boiling or freezing point constant.
**Table: Freezing and Boiling Point Constants**
The table below shows various solvents along with their chemical formulas and constants:
| Solvent | Formula | \( K_b \) (°C/m) | \( K_f \) (°C/m) |
|---------------|----------------------|------------------|------------------|
| Water | \( \text{H}_2\text{O} \) | 0.512 | 1.86 |
| Ethanol | \( \text{CH}_3\text{CH}_2\text{OH} \) | 1.22 | 1.99 |
| Chloroform | \( \text{CHCl}_3 \) | 3.67 | |
| Benzene | \( \text{C}_6\text{H}_6 \) | 2.53 | 5.12 |
| Diethyl ether | \( \text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3 \) | 2.02 | |
### Calculate
To calculate the mass of glucose needed, use the freezing point depression formula:
\[
\Delta T_f = i \times K_f \times m
\]
Where:
- \( \Delta T_f \) is the change in freezing point (0.350 °C)
- \( i \) is the van't Hoff factor (1 for glucose since it doesn’t dissociate)
- \( K_f \) is the freezing point depression constant for water (1.86 °C/m)
- \( m \) is the molality of the solution
**Calculate the molality (\( m \)):**
Re
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY