r= cos 8= sin 8= q/unit length 0x q/unit length 0 de P(r,0) og Ter=Tre 5. A line load of q per unit length is applied at the ground surface as shown in the Figure above with polar system: Given q = 35kN/m, calculate stresses at x =3.5 m and=2,0 m.
r= cos 8= sin 8= q/unit length 0x q/unit length 0 de P(r,0) og Ter=Tre 5. A line load of q per unit length is applied at the ground surface as shown in the Figure above with polar system: Given q = 35kN/m, calculate stresses at x =3.5 m and=2,0 m.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
![## Problem Statement
A line load of \( q \) per unit length is applied at the ground surface, as shown in the figure above with a polar system.
**Given:**
- \( q = 35 \, \text{kN/m} \)
**Task:**
Calculate stresses at \( x = 3.5 \, \text{m} \) and \( z = 2.0 \, \text{m} \).
## Description of Diagrams
### Left Diagram:
- **Coordinate System:** Cartesian with \( x \) and \( z \) axes.
- **Variables:**
- \( \theta \): Angle between the \( z \)-axis and line to point \( P \).
- \( r = \sqrt{x^2 + z^2} \): Radial distance from origin to point \( P \).
- \( \cos \theta = \frac{z}{\sqrt{x^2 + z^2}} \)
- \( \sin \theta = \frac{x}{\sqrt{x^2 + z^2}} \)
- **Stress Components:**
- \( \sigma_x \): Normal stress in the x-direction.
- \( \sigma_z \): Normal stress in the z-direction.
- \( \tau_{xz} \): Shear stress on the plane.
### Right Diagram:
- **Coordinate System:** Polar.
- **Variables:**
- \( \sigma_r \): Radial normal stress.
- \( \sigma_\theta \): Circumferential normal stress.
- \( \tau_{r\theta} \) (or \( \tau_{\theta r} \)): Shear stress in the radial-circumferential plane.
- **Element:** Infinitesimal sector at angle \( \theta \).
## Calculation Instructions
To solve the problem, utilize the given parameters and the stress distribution formulas for a line load applied at the surface. Compute the stresses \( \sigma_x \), \( \sigma_z \), and \( \tau_{xz} \) at the specified coordinates \( x = 3.5 \, \text{m} \) and \( z = 2.0 \, \text{m} \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe38bbf6b-f72d-45f6-b779-5783494b3fda%2F5f90b493-3393-4f99-aabb-383bac7c9117%2F2ks79o_processed.jpeg&w=3840&q=75)
Transcribed Image Text:## Problem Statement
A line load of \( q \) per unit length is applied at the ground surface, as shown in the figure above with a polar system.
**Given:**
- \( q = 35 \, \text{kN/m} \)
**Task:**
Calculate stresses at \( x = 3.5 \, \text{m} \) and \( z = 2.0 \, \text{m} \).
## Description of Diagrams
### Left Diagram:
- **Coordinate System:** Cartesian with \( x \) and \( z \) axes.
- **Variables:**
- \( \theta \): Angle between the \( z \)-axis and line to point \( P \).
- \( r = \sqrt{x^2 + z^2} \): Radial distance from origin to point \( P \).
- \( \cos \theta = \frac{z}{\sqrt{x^2 + z^2}} \)
- \( \sin \theta = \frac{x}{\sqrt{x^2 + z^2}} \)
- **Stress Components:**
- \( \sigma_x \): Normal stress in the x-direction.
- \( \sigma_z \): Normal stress in the z-direction.
- \( \tau_{xz} \): Shear stress on the plane.
### Right Diagram:
- **Coordinate System:** Polar.
- **Variables:**
- \( \sigma_r \): Radial normal stress.
- \( \sigma_\theta \): Circumferential normal stress.
- \( \tau_{r\theta} \) (or \( \tau_{\theta r} \)): Shear stress in the radial-circumferential plane.
- **Element:** Infinitesimal sector at angle \( \theta \).
## Calculation Instructions
To solve the problem, utilize the given parameters and the stress distribution formulas for a line load applied at the surface. Compute the stresses \( \sigma_x \), \( \sigma_z \), and \( \tau_{xz} \) at the specified coordinates \( x = 3.5 \, \text{m} \) and \( z = 2.0 \, \text{m} \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Introduction
A line load q per unit length is applied at the ground surface which is shown in the above figure.
q = 35 kN/m
We have to find out the stress at x = 3.5 m and z= 2m.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Fundamentals of Structural Analysis](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
![Sustainable Energy](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Traffic and Highway Engineering](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning