Question 3 In a vapour-compression refrigeration system, refrigerant - 134a enters the compressor superheated at 200 kPa and - 5 °C. The refrigerant enters the condenser at 1.4 MPa and 75 °C, and exits at 1.4 MPa as a saturated liquid. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. If the refrigerating capacity is 105 kW, represent the cycle on a T-s diagram and determine: a) the mass flow rate of the refrigerant in kg/s, b) the power input to the compressor in kW, c) the coefficient of performance, and (2) d) the isentropic compressor efficiency

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Question 3
In a vapour-compression refrigeration system,
refrigerant - 134a enters the compressor
superheated at 200 kPa and - 5 °C. The refrigerant
enters the condenser at 1.4 MPa and
75 °C, and exits at 1.4 MPa as a saturated liquid.
There is no significant heat transfer
between the compressor and its surroundings,
and the refrigerant passes through the
evaporator with a negligible change in pressure. If
the refrigerating capacity is 105 kW,
represent the cycle on a T-s diagram and
determine:
a) the mass flow rate of the refrigerant in kg/s,
b) the power input to the compressor in kW,
c) the coefficient of performance, and (2)
d) the isentropic compressor efficiency
Transcribed Image Text:Question 3 In a vapour-compression refrigeration system, refrigerant - 134a enters the compressor superheated at 200 kPa and - 5 °C. The refrigerant enters the condenser at 1.4 MPa and 75 °C, and exits at 1.4 MPa as a saturated liquid. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. If the refrigerating capacity is 105 kW, represent the cycle on a T-s diagram and determine: a) the mass flow rate of the refrigerant in kg/s, b) the power input to the compressor in kW, c) the coefficient of performance, and (2) d) the isentropic compressor efficiency
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY