Refrigerant-134a enters the compressor of a cooling system as superheated vapor at 0.18 MPa and 0°C with a flow rate of 0.15 kg/s. It exits the compressor at 0.8 MPa and 60°C. Post compression, the refrigerant is cooled in the condenser to 28°C and 1.4 MPa. Subsequently, it's throttled to 0.16 MPa. Neglecting any heat transfer and pressure drops in the pipelines between the components, represent the cycle on a T-s diagram concerning saturation lines. Calculate: (a) The rate of heat extraction from the cooling area and the energy input to the compressor. (b) The isentropic efficiency of the compressor. (c) The Coefficient of Performance (COP) of the cooling system.
Refrigerant-134a enters the compressor of a cooling system as superheated vapor at 0.18 MPa and 0°C with a flow rate of 0.15 kg/s. It exits the compressor at 0.8 MPa and 60°C. Post compression, the refrigerant is cooled in the condenser to 28°C and 1.4 MPa. Subsequently, it's throttled to 0.16 MPa. Neglecting any heat transfer and pressure drops in the pipelines between the components, represent the cycle on a T-s diagram concerning saturation lines. Calculate: (a) The rate of heat extraction from the cooling area and the energy input to the compressor. (b) The isentropic efficiency of the compressor. (c) The Coefficient of Performance (COP) of the cooling system.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step 1: Draw T-s diagram for given state points.
VIEWStep 2: Evaluate properties at state points.
VIEWStep 3: a) Evaluate heat extraction from cooling area and energy input to compressor.
VIEWStep 4: b) Evaluate isentropic efficiency of the compressor.
VIEWStep 5: c) Evaluate COP of the cycle.
VIEWSolution
VIEWStep by step
Solved in 6 steps with 29 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY