A refrigerator uses R-134a as the working fluid and uses a subcooling-superheating heat exchanger located after the evaporator to subcool the refregerant entering the expansion valve. The refregerant leaving the evaporator is superheated in the process. Assume the refregerant leaves the evaporator as saturated vapor and the condenser as saturated liquid and no pressure drops occur in the heat exchangers. The evaporator temperature is - 10°C, condenser pressure is 1000 kPa, and the flow rate is 20 kg/min. Assumming that the refrigerant is superheated 10°C, determine a) the compressor power; b) the tons of refrigeration; c) the COP.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A refrigerator uses R-134a as the working fluid and uses a subcooling-superheating heat exchanger located
after the evaporator to subcool the refregerant entering the expansion valve. The refregerant leaving the evaporator
is superheated in the process. Assume the refregerant leaves the evaporator as saturated vapor and the condenser
as saturated liquid and no pressure drops occur in the heat exchangers. The evaporator temperature is
10°C, condenser pressure is 1000 kPa, and the flow rate is 20 kg/min. Assumming that the refrigerant is
superheated 10°C, determine a) the compressor power; b) the tons of refrigeration; c) the COP.
X+M+
Fr
Condenser
3
4
Heat Exchanger
Evaporator
+
F
Compressor
T
6
4
5/1000kPa
세
-10°℃
2
-0°℃
Transcribed Image Text:A refrigerator uses R-134a as the working fluid and uses a subcooling-superheating heat exchanger located after the evaporator to subcool the refregerant entering the expansion valve. The refregerant leaving the evaporator is superheated in the process. Assume the refregerant leaves the evaporator as saturated vapor and the condenser as saturated liquid and no pressure drops occur in the heat exchangers. The evaporator temperature is 10°C, condenser pressure is 1000 kPa, and the flow rate is 20 kg/min. Assumming that the refrigerant is superheated 10°C, determine a) the compressor power; b) the tons of refrigeration; c) the COP. X+M+ Fr Condenser 3 4 Heat Exchanger Evaporator + F Compressor T 6 4 5/1000kPa 세 -10°℃ 2 -0°℃
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 1 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY