The vapour compression cycle (picture provided), utilises the refrigerant R134a flowing at 0.05 kg s-1. Assuming that the compression is adiabatic and reversible. If the actual input power to the compressor is 2 kW, then: 1. You need to determine the theoretical input power to the compressor and the heat transfer (Φ) to the evaporator. Take the enthalpies h1, h2, and h3 to be 238.41, 263.68 and 81.5 kJ kg-1 (use the 'NH3 Refrigeration Table' where you can find online). 2. You need to determine the coefficient of performance based on your answer to the previous question (1). 3. You need to determine the compressors mechanical efficiency.
The vapour compression cycle (picture provided), utilises the refrigerant R134a flowing at 0.05 kg s-1. Assuming that the compression is adiabatic and reversible. If the actual input power to the compressor is 2 kW, then: 1. You need to determine the theoretical input power to the compressor and the heat transfer (Φ) to the evaporator. Take the enthalpies h1, h2, and h3 to be 238.41, 263.68 and 81.5 kJ kg-1 (use the 'NH3 Refrigeration Table' where you can find online). 2. You need to determine the coefficient of performance based on your answer to the previous question (1). 3. You need to determine the compressors mechanical efficiency.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
I need help on the following question:
The vapour compression cycle (picture provided), utilises the refrigerant R134a flowing at 0.05 kg s-1. Assuming that the compression is adiabatic and reversible. If the actual input power to the compressor is 2 kW, then:
1. You need to determine the theoretical input power to the compressor and the heat transfer (Φ) to the
evaporator. Take the enthalpies h1, h2, and h3 to be 238.41, 263.68 and 81.5 kJ kg-1 (use the 'NH3 Refrigeration Table' where you can find online).
2. You need to determine the coefficient of performance based on your answer to the previous question (1).
3. You need to determine the compressors
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY