Question 1: X-ray Diffraction x-ray diffraction is a method used to identify different types of materials. While this is usually quite a complex process, however for a simple cubic structure, as seen below, we can find the distance between neighboring atoms. The below image shows the diffraction of x-rays passing through a cubic structure and illustrates a change in distance of 2d sine Light rays in phase /IN SA ' ᎾᎥᎾ . 20. b d sin 8 2d sin 0 Atoms in crystal If the wavelength of the x-ray is equal to an integer multiple of this change in distance, we will get constructive interference: mλ = 2d sine X-rays of wavelength 0.103 nm reflects off a crystal and a second-order maximum is recorded at a Bragg angle of 25.5°. (a) What is the spacing between the scattering planes in this crystal? (b) At what angle will the third-order maximum occur?
Question 1: X-ray Diffraction x-ray diffraction is a method used to identify different types of materials. While this is usually quite a complex process, however for a simple cubic structure, as seen below, we can find the distance between neighboring atoms. The below image shows the diffraction of x-rays passing through a cubic structure and illustrates a change in distance of 2d sine Light rays in phase /IN SA ' ᎾᎥᎾ . 20. b d sin 8 2d sin 0 Atoms in crystal If the wavelength of the x-ray is equal to an integer multiple of this change in distance, we will get constructive interference: mλ = 2d sine X-rays of wavelength 0.103 nm reflects off a crystal and a second-order maximum is recorded at a Bragg angle of 25.5°. (a) What is the spacing between the scattering planes in this crystal? (b) At what angle will the third-order maximum occur?
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps