Question 1 Consider the following model of the quantified relational logic of a hypothetical love triangle. U = {Alice, Bob, Carol, Dominic} a=Alice,b=Bob,c=Carol,d=Dominic [L] = {< Alice, Alice >, < Bob, Bob >, < Dominic, Dominic >, < Alice, Dominic >, < Dominic, Carol >, < Carol, Alice >, < Alice, Carol >, < Bob, Alice >, < Bob, Dominic >} Determine which of the following sentences are true in the model. You may read the formula Lxy as “x loves y”. If an existential sentence is true, provide at least one witness. If a universal sentence is false, provide at least one counterexample. (a) Lac  (b) Lca  (c) ∃z∃y(Lzy ∧ Lyz) (d) ∀zLzz  (e) ∀z∃y(Lzz ∨ Lyz) (f) ∀z∀y(Lzy → Lyz)  (g) ∀z∃y(Lzz → Lyz)  (h) ∃z∀y(Lzz ∧ ¬Lyz)  (i) ∃z∃y(Lzy ∧ ¬Lyz)  (j) ∃x∃y∃z((Lxz ∧ Lxy) ∧ Lxx)

icon
Related questions
Question

Question 1

Consider the following model of the quantified relational logic of a hypothetical love triangle.

  1. U = {Alice, Bob, Carol, Dominic}

  2. a=Alice,b=Bob,c=Carol,d=Dominic

  3. [L] = {< Alice, Alice >, < Bob, Bob >, < Dominic, Dominic >, < Alice, Dominic >,

    < Dominic, Carol >, < Carol, Alice >, < Alice, Carol >, < Bob, Alice >, < Bob, Dominic >}

Determine which of the following sentences are true in the model. You may read the formula Lxy as “x loves y”. If an existential sentence is true, provide at least one witness. If a universal sentence is false, provide at least one counterexample.

(a) Lac 

(b) Lca 

(c) ∃z∃y(Lzy ∧ Lyz)

(d) ∀zLzz 

(e) ∀z∃y(Lzz ∨ Lyz)

(f) ∀z∀y(Lzy → Lyz) 

(g) ∀z∃y(Lzz → Lyz) 

(h) ∃z∀y(Lzz ∧ ¬Lyz) 

(i) ∃z∃y(Lzy ∧ ¬Lyz) 

(j) ∃x∃y∃z((Lxz ∧ Lxy) ∧ Lxx) 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS