Consider the following statement. If n is divisible by 6, then n is divisible by 2 and n is divisible by 3. In (a)–(d) below, select the negation, contrapositive, converse, and inverse for the statement. (Assume that all variables represent fixed quantities or entities, as appropriate.) (a) Negation n is divisible by 6 and either n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 2 or n is not divisible by 3, then n is not divisible by 6. If n is divisible by 2 and n is divisible by 3, then n is divisible by 6.If n is not divisible by 6, then n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 6, then n is divisible by 2 and n is divisible by 3. (b) Contrapositive n is divisible by 6 and either n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 2 or n is not divisible by 3, then n is not divisible by 6. If n is divisible by 2 and n is divisible by 3, then n is divisible by 6.If n is not divisible by 6, then n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 6, then n is divisible by 2 and n is divisible by 3. (c) Converse n is divisible by 6 and either n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 2 or n is not divisible by 3, then n is not divisible by 6. If n is divisible by 2 and n is divisible by 3, then n is divisible by 6.If n is not divisible by 6, then n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 6, then n is divisible by 2 and n is divisible by 3. (d) Inverse n is divisible by 6 and either n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 2 or n is not divisible by 3, then n is not divisible by 6. If n is divisible by 2 and n is divisible by 3, then n is divisible by 6.If n is not divisible by 6, then n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 6, then n is divisible by 2 and n is divisible by 3
Consider the following statement.
If n is divisible by 6, then n is divisible by 2 and n is divisible by 3.
In (a)–(d) below, select the negation, contrapositive, converse, and inverse for the statement. (Assume that all variables represent fixed quantities or entities, as appropriate.)
(a)
Negation
n is divisible by 6 and either n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 2 or n is not divisible by 3, then n is not divisible by 6. If n is divisible by 2 and n is divisible by 3, then n is divisible by 6.If n is not divisible by 6, then n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 6, then n is divisible by 2 and n is divisible by 3.
(b)
Contrapositive
n is divisible by 6 and either n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 2 or n is not divisible by 3, then n is not divisible by 6. If n is divisible by 2 and n is divisible by 3, then n is divisible by 6.If n is not divisible by 6, then n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 6, then n is divisible by 2 and n is divisible by 3.
(c)
Converse
n is divisible by 6 and either n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 2 or n is not divisible by 3, then n is not divisible by 6. If n is divisible by 2 and n is divisible by 3, then n is divisible by 6.If n is not divisible by 6, then n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 6, then n is divisible by 2 and n is divisible by 3.
(d)
Inverse
n is divisible by 6 and either n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 2 or n is not divisible by 3, then n is not divisible by 6. If n is divisible by 2 and n is divisible by 3, then n is divisible by 6.If n is not divisible by 6, then n is not divisible by 2 or n is not divisible by 3.If n is not divisible by 6, then n is divisible by 2 and n is divisible by 3.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps