Python Fit a cubic to the following data set: x = array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]) y = array([ -23.01372758, -98.68128886, -193.98575465, -278.72527151, -323.22426954, -298.42667233, -172.78799319, 82.63979118, 497.75672707, 1101.55912648]) What is the best-fit value of the y-intercept of this curve (i.e., the constant term in the polynomial)? Give your answer to at least eight decimal places.
Python Fit a cubic to the following data set: x = array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]) y = array([ -23.01372758, -98.68128886, -193.98575465, -278.72527151, -323.22426954, -298.42667233, -172.78799319, 82.63979118, 497.75672707, 1101.55912648]) What is the best-fit value of the y-intercept of this curve (i.e., the constant term in the polynomial)? Give your answer to at least eight decimal places.
Related questions
Question
Python
Fit a cubic to the following data set:
x = array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
y = array([ -23.01372758, -98.68128886, -193.98575465, -278.72527151, -323.22426954, -298.42667233, -172.78799319, 82.63979118, 497.75672707, 1101.55912648])
What is the best-fit value of the y-intercept of this curve (i.e., the constant term in the polynomial)? Give your answer to at least eight decimal places.
Expert Solution
Step 1
Given Information:
Consider the given dataset:
x = array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
y = array([ -23.01372758, -98.68128886, -193.98575465, -278.72527151, -323.22426954, -298.42667233, -172.78799319, 82.63979118, 497.75672707, 1101.55912648])
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images