Problem 2: A perfusion bioreactor used to grow bone has a volume of 500 mL as shown. Osteogenic medium is supplied continuously at a flow rate of 10 mL/minute. After a few hours, the cytokine bone-morphogenetic protein 2 (BMP-2) is added (i.e., t = 0) through the injection port at a constant rate for 15 minutes, such that the concentration going into the reactor chamber is 10 ng/mL. Assuming that the bioreactor is well mixed (i.e., treat it as a CSTR), determine the maximum concentration of BMP-2 (measured at the sample port) and what time after injection this maximum occurs. You can assume that there is no lag time between the concentration at the injection measured at the sample port and the concentration in the reactor chamber.
Problem 2: A perfusion bioreactor used to grow bone has a volume of 500 mL as shown. Osteogenic medium is supplied continuously at a flow rate of 10 mL/minute. After a few hours, the cytokine bone-morphogenetic protein 2 (BMP-2) is added (i.e., t = 0) through the injection port at a constant rate for 15 minutes, such that the concentration going into the reactor chamber is 10 ng/mL. Assuming that the bioreactor is well mixed (i.e., treat it as a CSTR), determine the maximum concentration of BMP-2 (measured at the sample port) and what time after injection this maximum occurs. You can assume that there is no lag time between the concentration at the injection measured at the sample port and the concentration in the reactor chamber.
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Step 1: Calculate the volume of the bioreactor: Volume of bioreactor = 500 mL
VIEWStep 2: Calculate the flow rate of osteogenic medium:
VIEWStep 3: Calculate the injection time of BMP-2:
VIEWStep 4: Calculate the concentration of BMP-2 in the bioreactor at the end of injection:
VIEWStep 5: Calculate the maximum concentration of BMP-2 in the bioreactor and the time at which it occurs:
VIEWSolution
VIEWTrending now
This is a popular solution!
Step by step
Solved in 6 steps
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The