Plotting • Plot the generated data points, the true line y = ax + ẞ, and the fitted line y [17]: def plot_fit(n): alpha beta = = np.random. uniform (1.0,5.0) np.random.uniform (0.0, 10.0) x, y = generate_data(n) slope = find_optimal_slope (x, y) intercept = find_optimal_intercept(x,y) fitted line = slope x + intercept true_line = alphax beta plot_fit (50) = wxwo on the same plot. ← 古早 G
Plotting • Plot the generated data points, the true line y = ax + ẞ, and the fitted line y [17]: def plot_fit(n): alpha beta = = np.random. uniform (1.0,5.0) np.random.uniform (0.0, 10.0) x, y = generate_data(n) slope = find_optimal_slope (x, y) intercept = find_optimal_intercept(x,y) fitted line = slope x + intercept true_line = alphax beta plot_fit (50) = wxwo on the same plot. ← 古早 G
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
alpha = np.random.uniform(1.0,5.0)
beta = np.random.uniform(0.0,10.0)
def generate_data(n):
x = np.random.uniform(-10, 10)
epsilon = np.random.uniform(-n,n)
y = alpha * x + beta + epsilon
return x,y
def find_optimal_slope(x,y):
x_mean = np.mean(x)
y_mean = np.mean(y)
numerator = np.sum((x - x_mean) * (y - y_mean))
denominator = np.sum((x - x_mean)**2)
if denominator == 0:
slope = 9999999
else:
slope = numerator / denominator
return slope
def find_optimal_intercept(x,y):
slope = find_optimal_slope(x, y)
x_mean = np.mean(x)
y_mean = np.mean(y)
intercept = y_mean - slope * x_mean
return intercept
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education