Plane waves and wave packets. In class, we solved the Schrodinger equation for a "free particle" (e.g. when U(x,t) = 0). The correct[solution is (x, t) = Aei(px-Et)/ħ This represents a "plane wave" that exists for all x. However, there is a strange problem with this: if you try to normalize the wave function (determine A by integrating * for all x), you will find an inconsistency (A has to be set equal to 0?). This is because the plane wave stretches to infinity. In order to actually represent a free particle, this solution needs to be handled carefully. Explain in words (and/or diagrams) how we can construct a "wave packet" from the plane wave solution. (Hint 1: consider a superposition of plane waves for a limited range of momentum/energy. Hint 2: have a look at the brief discussion in the middle of pg. 278 and especially pg. 308-309 of the text.)
Plane waves and wave packets. In class, we solved the Schrodinger equation for a "free particle" (e.g. when U(x,t) = 0). The correct[solution is (x, t) = Aei(px-Et)/ħ This represents a "plane wave" that exists for all x. However, there is a strange problem with this: if you try to normalize the wave function (determine A by integrating * for all x), you will find an inconsistency (A has to be set equal to 0?). This is because the plane wave stretches to infinity. In order to actually represent a free particle, this solution needs to be handled carefully. Explain in words (and/or diagrams) how we can construct a "wave packet" from the plane wave solution. (Hint 1: consider a superposition of plane waves for a limited range of momentum/energy. Hint 2: have a look at the brief discussion in the middle of pg. 278 and especially pg. 308-309 of the text.)
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps