If two wave functions ψ1 (x,t), ψ2 (x,t) are solutions to the (one dimensional) time dependent Schroedinger eqn. show that ψ = Aψ1 + Bψ2 is also a solution, A and B are complex constants.
If two wave functions ψ1 (x,t), ψ2 (x,t) are solutions to the (one dimensional) time dependent Schroedinger eqn. show that ψ = Aψ1 + Bψ2 is also a solution, A and B are complex constants.
Related questions
Question
100%
Subject: Physics - Jr/Senior level
If two wave functions ψ1 (x,t), ψ2 (x,t) are solutions to the (one dimensional) time dependent Schroedinger eqn. show that ψ = Aψ1 + Bψ2 is also a solution, A and B are complex constants. I started by plugging Aψ1 + Bψ2 into the time dependent Schroedinger equation but not sure where to go from there. Thank you!
Expert Solution
Step 1
Given,
and are the solutions of time-dependent Schrodinger's equation.
Then,
And
Now we have to prove that the wave function is also a solution of Schrodinger's equation.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps