NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30°C by rejecting its waste heat to cooling water that enters the condenser at 18°C at a rate of 0.28 kg/s and leaves at 26°C. The refrigerant enters the condenser at 1.2 MPa and 65°C and leaves at 42°C. The inlet state of the compressor is 60 kPa and -34°C and the compressor is estimated to gain a net heat of 420 W from the surroundings. The heat exchanger loses no heat to the environment. 26°C 42°C (3) Condenser Expansion valve Evaporator QL Water 18°C 1.2 MPa 65°C Compressor 60 kPa -34°C Determine the theoretical maximum refrigeration load for the same power input to the compressor. The theoretical maximum refrigeration load for the same power input to the compressor is [ kW.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30°C by
rejecting its waste heat to cooling water that enters the condenser at 18°C at a rate of 0.28 kg/s and leaves at 26°C. The
refrigerant enters the condenser at 1.2 MPa and 65°C and leaves at 42°C. The inlet state of the compressor is 60 kPa and
-34°C and the compressor is estimated to gain a net heat of 420 W from the surroundings. The heat exchanger loses no
heat to the environment.
26°C
42°C
↑
4
Condenser
Expansion
valve
Evaporator
QL
Water
18°C
1.2 MPa
65°C
↑gin
Win
Compressor
60 kPa
-34°C
Determine the theoretical maximum refrigeration load for the same power input to the compressor.
The theoretical maximum refrigeration load for the same power input to the compressor is
KW.
Transcribed Image Text:NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30°C by rejecting its waste heat to cooling water that enters the condenser at 18°C at a rate of 0.28 kg/s and leaves at 26°C. The refrigerant enters the condenser at 1.2 MPa and 65°C and leaves at 42°C. The inlet state of the compressor is 60 kPa and -34°C and the compressor is estimated to gain a net heat of 420 W from the surroundings. The heat exchanger loses no heat to the environment. 26°C 42°C ↑ 4 Condenser Expansion valve Evaporator QL Water 18°C 1.2 MPa 65°C ↑gin Win Compressor 60 kPa -34°C Determine the theoretical maximum refrigeration load for the same power input to the compressor. The theoretical maximum refrigeration load for the same power input to the compressor is KW.
Expert Solution
steps

Step by step

Solved in 4 steps with 22 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY