Mary stays in her graduate student office in the basement for days. She has made up her mind not leaving her office until she completes her research project. However, she wants to know what weather is like outside. There is a thermometer in her office, which is the only source of information that Mary can obtain. The following Hidden Markov Model describes the weather at day t is independent to the weather before day t-1 given the weather at day t-1. The initial transition and sensor model is given in the following, where W is the weather outside and F is the thermometer reading. We W, W; W, F1 F2 F3 W. Wo P(Wo) We P(WW1) high W P(FW) 0.7 0.3 sun sun 0.8 sun 0.9 rain 0.2 low high rain low sun sun sun rain 0.1 sun rain 0.3 0.2 rain rain 0.7 rain 0.8 1. From the transition model, we can compute P(W;-sun) - 0.75, P(W;-rain) -0.25. When Mary observed F-high, what is the probability P(W; sun | F1•high)? Answer: 2. From the transition model, we can compute P(W2-sun) - 0.675, P(Wzerain) -0.375. But we want to predict tomorrow's weather based on observation. What is P(W2-sun | F;-high)? Answer: 3. Given P(wf. f) for all w, find P(W,|f. f). Answer:
Mary stays in her graduate student office in the basement for days. She has made up her mind not leaving her office until she completes her research project. However, she wants to know what weather is like outside. There is a thermometer in her office, which is the only source of information that Mary can obtain. The following Hidden Markov Model describes the weather at day t is independent to the weather before day t-1 given the weather at day t-1. The initial transition and sensor model is given in the following, where W is the weather outside and F is the thermometer reading. We W, W; W, F1 F2 F3 W. Wo P(Wo) We P(WW1) high W P(FW) 0.7 0.3 sun sun 0.8 sun 0.9 rain 0.2 low high rain low sun sun sun rain 0.1 sun rain 0.3 0.2 rain rain 0.7 rain 0.8 1. From the transition model, we can compute P(W;-sun) - 0.75, P(W;-rain) -0.25. When Mary observed F-high, what is the probability P(W; sun | F1•high)? Answer: 2. From the transition model, we can compute P(W2-sun) - 0.675, P(Wzerain) -0.375. But we want to predict tomorrow's weather based on observation. What is P(W2-sun | F;-high)? Answer: 3. Given P(wf. f) for all w, find P(W,|f. f). Answer:
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 9 images
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman