Let's calculate how much mass will be lost by the Sun during the course of its main-sequence lifetime. While it is on the main sequence, a star converts about 10% of the hydrogen initially present into helium (remember that it is only the core of the star that is hot enough for fusion). During nuclear fusion, the Sun converts about 0.7% of the core hydrogen mass into energy. The total mass of the Sun is 2 × 1030 kg.  How many kilograms of mass will be converted to energy during the main sequence stage of the Sun's life? What is the ratio of this lost mass to the Earth's mass (6 × 1024 kg)? In other words, how many Earths of mass will be turned into energy?

icon
Related questions
Question

Let's calculate how much mass will be lost by the Sun during the course of its main-sequence lifetime. While it is on the main sequence, a star converts about 10% of the hydrogen initially present into helium (remember that it is only the core of the star that is hot enough for fusion). During nuclear fusion, the Sun converts about 0.7% of the core hydrogen mass into energy. The total mass of the Sun is 2 × 1030 kg.  How many kilograms of mass will be converted to energy during the main sequence stage of the Sun's life? What is the ratio of this lost mass to the Earth's mass (6 × 1024 kg)? In other words, how many Earths of mass will be turned into energy? 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions