ld Price ($ thousands) SqFt 1 153000 920 1 0 33 Yes Baths Bedrooms Garage Age of Property Lot Size Property Condition Basement Outdoor Amenities School Quality Crime Rate Proximity to Amenities Transportation Accessibility 3280 Poor Property Tax Rate None 6 1.83 3.5 No 186 2 163150 750 1 2 0 38 2772 Poor No None 9 2.34 3.9 Yes 104 3 164900 900 1 2 0 13 3530 Excellent Yes None 6 2.98 3.9 No 2.11 4 170175 1500 т 2 0 31 5561 Fair Yes Deck 7 2.49 4.8 No 184 5 176900 1030 2 2 0 47 3247 Excellent No None 3 2.82 4.3 No 1.95 6 187700 1090 2 0 36 3898 Pocr No Garden 8 2.68 4 No 15 7 295000 1280 2 2 1 45 4617 Excellent Yes None 9 2.66 5 No 2.22 8 251650 1365 1 2 1 24 4674 Good No Garden 8 2.69 3.8 No 2.32 9 472990 1690 3 3 1 15 6315 Fair Yes Deck g 1.2 4 No 15 10 473000 1765 3 3 1 29 6944 Fair Yes Deck 9 1.74 4.2 No 1.88 11 773650 2780 3.5 4 2 8 10913 Fair Yes Deck 8 1 1.6 No 1.63 674000 1910 3 3 2 5 6591 Poor Yes Garden 6 1 2.8 No 1.95 13 885000 1920 4 4 2 29 5977 Fair No Deck 7 1 1.8 No 2.19 14 780000 1930 4 4 2 47 7691 Good Yes Garden 8 1 2.1 Yes 23 15 385900 950 1.5 3 1 4 3647 Poor Yes Deck 6 1.94 4 No 134 16 284650 850 1 2 1 12 2656 Fair No None 5 1.94 3.7 No 1.09 17 189500 950 2 1 18 392800 1025 2 2 19 299600 1560 1.5 2 20 115350 980 1.5 1 21 120170 750 1.5 1 22 164900 840 1 1 23 574900 2180 2.5 3 24 970000 3400 3.5 4 25 810000 2790 3 4 26 840000 2860 3 4 27 185500 1350 1 1 28 289600 1100 1.5 2 OHHOOOHMNNOO 0 45 3725 Fair No None 7 2.93 4.1 Yes 1.93 1 2 3967 Excellent No Garden 6 1.65 3.6 No 1.66 1 27 5489 Excellent No Pool 7 1.77 3.8 Yes 197 0 31 3519 Fair No Deck 7 3.06 4 Yes 1.19 0 36 2549 Good No None 6 1.9 5 No 1.63 0 36 2566 Poor No None 6 2.7 5 Yes 15 1 26 7271 Good Yes Garden 6 1 3.3 No 2.27 3 43 12930 Fair Yes Garden 9 1 1.6 No 2.94 2 27 8383 Good Yes Garden 8 1 1.9 No 2.79 2 5 9534 Excellent No Deck 9 1 1.8 Yes 28 0 20 4588 Good Yes None 6 2.59 5 Yes 2.02 0 11 3891 Fair No Pool 6 1.07 4.5 No 1.93 29 389800 1250 2 3 1 10 4900 Fair Yes None 8 1.38 3.3 No 2.29 30 689500 1870 3 3 1 40 6258 Good Yes Garden 9 1.22 2.8 No 19 31 889100 2850 3.5 4 2 38 9539 Good Yes Garden 7 1 1.9 Yes 2.15 32 283700 985 1.5 2 33 160450 980 1 1 34 195989 1100 1.5 1 35 999900 3250 4 4 36 225340 1150 2 2 COONO 0 6 3681 Good No None 6 2.2 4.3 No 1.09 0 8 3383 Poor Yes None 8 1.79 4.7 No 2.08 0 23 3547 Fair No Garden 8 2.64 4.9 No 1.12 2 47 11220 Good No Garden 8 1 1.2 Yes 2.21 0 26 3612 Good No None 7 2.27 4.3 No 1.22 37 125750 950 1.5 1 0 46 3018 Good No Deck 6 3.19 3.7 No 2.14 38 124700 890 2 1 0 43 3114 Fair No None 3 2.24 4 No 2.18 39 200500 1200 2 2 1 12 4103 Fair Yes Deck 9 2.08 4.8 Yes 1.72 40 128500 980 1 1 0 26 3837 Poor Yes None 8 1.33 4.1 No 2.1 41 174360 1100 1.5 1 1 13 3699 Excellent No Garden 7 2.88 4 No 1.37 42 179800 1210 2 1 0 40 4333 Poor Yes Deck 7 2.56 4.4 Yes 2.15 43 205450 1350 2.5 2 1 18 4904 Fair Yes Garden 7 1.47 4.7 No 169 44 779800 2600 3 4 2 25 7834 Excellent Yes Garden 9 1 1.9 No 199 45 128800 985 1.5 1 0 33 3609 Fair No None 8 2.13 2.8 Yes 1.11 46 522200 2345 3 3 1 47 7452 Fair No Pool 6 1.66 2.8 Yes 1.77 47 1173200 3250 3.5 5 2 40 12873 Poor No Deck 9 1 1.7 No 1.59 48 1824200 3875 4 5 3 43 12201 Good Yes Garden 8 1 1 Yes 2.91 49 2475200 4560 5 6 3 12 15571 Good No Garden 8 1 1 No 3.78 50 3126200 5870 5.5 7 4 44 18111 Fair Yes Pool 9 1 1 No 2
ld Price ($ thousands) SqFt 1 153000 920 1 0 33 Yes Baths Bedrooms Garage Age of Property Lot Size Property Condition Basement Outdoor Amenities School Quality Crime Rate Proximity to Amenities Transportation Accessibility 3280 Poor Property Tax Rate None 6 1.83 3.5 No 186 2 163150 750 1 2 0 38 2772 Poor No None 9 2.34 3.9 Yes 104 3 164900 900 1 2 0 13 3530 Excellent Yes None 6 2.98 3.9 No 2.11 4 170175 1500 т 2 0 31 5561 Fair Yes Deck 7 2.49 4.8 No 184 5 176900 1030 2 2 0 47 3247 Excellent No None 3 2.82 4.3 No 1.95 6 187700 1090 2 0 36 3898 Pocr No Garden 8 2.68 4 No 15 7 295000 1280 2 2 1 45 4617 Excellent Yes None 9 2.66 5 No 2.22 8 251650 1365 1 2 1 24 4674 Good No Garden 8 2.69 3.8 No 2.32 9 472990 1690 3 3 1 15 6315 Fair Yes Deck g 1.2 4 No 15 10 473000 1765 3 3 1 29 6944 Fair Yes Deck 9 1.74 4.2 No 1.88 11 773650 2780 3.5 4 2 8 10913 Fair Yes Deck 8 1 1.6 No 1.63 674000 1910 3 3 2 5 6591 Poor Yes Garden 6 1 2.8 No 1.95 13 885000 1920 4 4 2 29 5977 Fair No Deck 7 1 1.8 No 2.19 14 780000 1930 4 4 2 47 7691 Good Yes Garden 8 1 2.1 Yes 23 15 385900 950 1.5 3 1 4 3647 Poor Yes Deck 6 1.94 4 No 134 16 284650 850 1 2 1 12 2656 Fair No None 5 1.94 3.7 No 1.09 17 189500 950 2 1 18 392800 1025 2 2 19 299600 1560 1.5 2 20 115350 980 1.5 1 21 120170 750 1.5 1 22 164900 840 1 1 23 574900 2180 2.5 3 24 970000 3400 3.5 4 25 810000 2790 3 4 26 840000 2860 3 4 27 185500 1350 1 1 28 289600 1100 1.5 2 OHHOOOHMNNOO 0 45 3725 Fair No None 7 2.93 4.1 Yes 1.93 1 2 3967 Excellent No Garden 6 1.65 3.6 No 1.66 1 27 5489 Excellent No Pool 7 1.77 3.8 Yes 197 0 31 3519 Fair No Deck 7 3.06 4 Yes 1.19 0 36 2549 Good No None 6 1.9 5 No 1.63 0 36 2566 Poor No None 6 2.7 5 Yes 15 1 26 7271 Good Yes Garden 6 1 3.3 No 2.27 3 43 12930 Fair Yes Garden 9 1 1.6 No 2.94 2 27 8383 Good Yes Garden 8 1 1.9 No 2.79 2 5 9534 Excellent No Deck 9 1 1.8 Yes 28 0 20 4588 Good Yes None 6 2.59 5 Yes 2.02 0 11 3891 Fair No Pool 6 1.07 4.5 No 1.93 29 389800 1250 2 3 1 10 4900 Fair Yes None 8 1.38 3.3 No 2.29 30 689500 1870 3 3 1 40 6258 Good Yes Garden 9 1.22 2.8 No 19 31 889100 2850 3.5 4 2 38 9539 Good Yes Garden 7 1 1.9 Yes 2.15 32 283700 985 1.5 2 33 160450 980 1 1 34 195989 1100 1.5 1 35 999900 3250 4 4 36 225340 1150 2 2 COONO 0 6 3681 Good No None 6 2.2 4.3 No 1.09 0 8 3383 Poor Yes None 8 1.79 4.7 No 2.08 0 23 3547 Fair No Garden 8 2.64 4.9 No 1.12 2 47 11220 Good No Garden 8 1 1.2 Yes 2.21 0 26 3612 Good No None 7 2.27 4.3 No 1.22 37 125750 950 1.5 1 0 46 3018 Good No Deck 6 3.19 3.7 No 2.14 38 124700 890 2 1 0 43 3114 Fair No None 3 2.24 4 No 2.18 39 200500 1200 2 2 1 12 4103 Fair Yes Deck 9 2.08 4.8 Yes 1.72 40 128500 980 1 1 0 26 3837 Poor Yes None 8 1.33 4.1 No 2.1 41 174360 1100 1.5 1 1 13 3699 Excellent No Garden 7 2.88 4 No 1.37 42 179800 1210 2 1 0 40 4333 Poor Yes Deck 7 2.56 4.4 Yes 2.15 43 205450 1350 2.5 2 1 18 4904 Fair Yes Garden 7 1.47 4.7 No 169 44 779800 2600 3 4 2 25 7834 Excellent Yes Garden 9 1 1.9 No 199 45 128800 985 1.5 1 0 33 3609 Fair No None 8 2.13 2.8 Yes 1.11 46 522200 2345 3 3 1 47 7452 Fair No Pool 6 1.66 2.8 Yes 1.77 47 1173200 3250 3.5 5 2 40 12873 Poor No Deck 9 1 1.7 No 1.59 48 1824200 3875 4 5 3 43 12201 Good Yes Garden 8 1 1 Yes 2.91 49 2475200 4560 5 6 3 12 15571 Good No Garden 8 1 1 No 3.78 50 3126200 5870 5.5 7 4 44 18111 Fair Yes Pool 9 1 1 No 2
Enhanced Discovering Computers 2017 (Shelly Cashman Series) (MindTap Course List)
1st Edition
ISBN:9781305657458
Author:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Chapter11: Building Solutions: Database, System, And Application Development Tools
Section: Chapter Questions
Problem 23CT
Related questions
Question
You must use Excel to perform the regression analysis. Provide the answers under the space provided for each question. You must provide the Excel output for the question along with the answers. Round off the values on the output to three-five decimal places if appropriate.
Questions:
- As preliminary analysis the dataset includes information on 50 homes currently for sale, but some homes have unusually high prices, square footage, and lot sizes. To refine the dataset for analysis, apply the following exclusion criteria:
- Exclude any home with a price greater than $1,000,000.
- Exclude any home with square footage (SqFt) greater than 3000 ft².
- Exclude any home with a lot size greater than 10,000 ft².
After performing these exclusions, how many homes remain in the dataset?
Show the observations that excluded (2p)
- How many categorical variables are present in the dataset? How will you incorporate these categorical variables into the regression analysis? (2p)
Create indicator (dummy) variables for each categorical variable to identify each categorical variable and convert into a binary variable (0 or 1). Here’s a guide based on categorical variables: (3p)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Enhanced Discovering Computers 2017 (Shelly Cashm…
Computer Science
ISBN:
9781305657458
Author:
Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:
Cengage Learning
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781285196145
Author:
Steven, Steven Morris, Carlos Coronel, Carlos, Coronel, Carlos; Morris, Carlos Coronel and Steven Morris, Carlos Coronel; Steven Morris, Steven Morris; Carlos Coronel
Publisher:
Cengage Learning
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781305627482
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Enhanced Discovering Computers 2017 (Shelly Cashm…
Computer Science
ISBN:
9781305657458
Author:
Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:
Cengage Learning
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781285196145
Author:
Steven, Steven Morris, Carlos Coronel, Carlos, Coronel, Carlos; Morris, Carlos Coronel and Steven Morris, Carlos Coronel; Steven Morris, Steven Morris; Carlos Coronel
Publisher:
Cengage Learning
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781305627482
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning