: import pandas as pd file_path='/Users//Downloads/Data 2/ExampleTrainDataset.csv' filepath2 = '/Users//Downloads/Data data = pd.read_csv(file_path) data2 = pd.read_csv(filepath2) 2/ExampleTestDataset.csv' print(data) print(data2) x1 x2 x3 Y 012345678 2 3.0 2 0 2 3.0 4 0 2 3 9.0 1 0 3 1 0.5 2 0 4 2.0 1 0 5 7 2.0 1 1 3 2.0 5 1 5 2.0 2 1 8 2 4.0 3 1 2 226 11234 9 3 2.0 0 x1 1 1 x2 x3 Y 2 6 3 7 4 3 32243 3 1 0 2 4 0 2 2 1 4 3 31 3 1 1 1
: import pandas as pd file_path='/Users//Downloads/Data 2/ExampleTrainDataset.csv' filepath2 = '/Users//Downloads/Data data = pd.read_csv(file_path) data2 = pd.read_csv(filepath2) 2/ExampleTestDataset.csv' print(data) print(data2) x1 x2 x3 Y 012345678 2 3.0 2 0 2 3.0 4 0 2 3 9.0 1 0 3 1 0.5 2 0 4 2.0 1 0 5 7 2.0 1 1 3 2.0 5 1 5 2.0 2 1 8 2 4.0 3 1 2 226 11234 9 3 2.0 0 x1 1 1 x2 x3 Y 2 6 3 7 4 3 32243 3 1 0 2 4 0 2 2 1 4 3 31 3 1 1 1
Chapter14: Files And Streams
Section: Chapter Questions
Problem 2CP: In Chapter 11, you created the most recent version of the MarshallsRevenue program, which prompts...
Related questions
Question
a): Use the “ExampleTrainDataset.csv” Implement a multi-layer perceptron
with 1 input layer, 1 hidden layer with 4 perceptron (fully connected), 1 output layer
with 1 perceptron.
- Use squared error as the loss function.
- Implement batch-based learning (i.e, accumulate loss for all samples in
each iteration, and update weights once at the end)
- Use sigmoid activation function for all perceptron. Learning rate = 0.01
- Perform 50 iterations of learning.
- Plot a graph of training Loss with respect to iterations. Include this graph in
your report with the final weight vectors.
b): Using the trained MLP, perform predictions on “ExampleTestDataset.csv”
and report the test loss.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
Recommended textbooks for you
Microsoft Visual C#
Computer Science
ISBN:
9781337102100
Author:
Joyce, Farrell.
Publisher:
Cengage Learning,
Programming Logic & Design Comprehensive
Computer Science
ISBN:
9781337669405
Author:
FARRELL
Publisher:
Cengage
COMPREHENSIVE MICROSOFT OFFICE 365 EXCE
Computer Science
ISBN:
9780357392676
Author:
FREUND, Steven
Publisher:
CENGAGE L
Microsoft Visual C#
Computer Science
ISBN:
9781337102100
Author:
Joyce, Farrell.
Publisher:
Cengage Learning,
Programming Logic & Design Comprehensive
Computer Science
ISBN:
9781337669405
Author:
FARRELL
Publisher:
Cengage
COMPREHENSIVE MICROSOFT OFFICE 365 EXCE
Computer Science
ISBN:
9780357392676
Author:
FREUND, Steven
Publisher:
CENGAGE L
Np Ms Office 365/Excel 2016 I Ntermed
Computer Science
ISBN:
9781337508841
Author:
Carey
Publisher:
Cengage
C++ Programming: From Problem Analysis to Program…
Computer Science
ISBN:
9781337102087
Author:
D. S. Malik
Publisher:
Cengage Learning
C++ for Engineers and Scientists
Computer Science
ISBN:
9781133187844
Author:
Bronson, Gary J.
Publisher:
Course Technology Ptr