How many fragments would be produced if the DNA is cut by that enzyme? Number each fragment Which fragment would be the largest? Which fragment would be the smallest?
Molecular Techniques
Molecular techniques are methods employed in molecular biology, genetics, biochemistry, and biophysics to manipulate and analyze nucleic acids (deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)), protein, and lipids. Techniques in molecular biology are employed to investigate the molecular basis for biological activity. These techniques are used to analyze cellular properties, structures, and chemical reactions, with a focus on how certain molecules regulate cellular reactions and growth.
DNA Fingerprinting and Gel Electrophoresis
The genetic makeup of living organisms is shown by a technique known as DNA fingerprinting. The difference is the satellite region of DNA is shown by this process. Alex Jeffreys has invented the process of DNA fingerprinting in 1985. Any biological samples such as blood, hair, saliva, semen can be used for DNA fingerprinting. DNA fingerprinting is also known as DNA profiling or molecular fingerprinting.
Molecular Markers
A known DNA sequence or gene sequence is present on a chromosome, and it is associated with a specific trait or character. It is mainly used as a genetic marker of the molecular marker. The first genetic map was done in a fruit fly, using genes as the first marker. In two categories, molecular markers are classified, classical marker and a DNA marker. A molecular marker is also known as a genetic marker.
DNA Sequencing
The most important feature of DNA (deoxyribonucleic acid) molecules are nucleotide sequences and the identification of genes and their activities. This the reason why scientists have been working to determine the sequences of pieces of DNA covered under the genomic field. The primary objective of the Human Genome Project was to determine the nucleotide sequence of the entire human nuclear genome. DNA sequencing selectively eliminates the introns leading to only exome sequencing that allows proteins coding.
An important feature of restriction enzymes is that each enzyme only recognizes a specific palindrome and cuts the DNA only at that specific sequence of bases. A palindromic sequence can be repeated a number of times on a strand of DNA, and the specific restriction enzyme will cut all those palindromes, no matter what species the DNA comes from.
A linear DNA molecule is represented below. The DNA is represented by one line, although in actuality, DNA has two strands.
If the DNA molecule has two restriction sites, specifically two repeats of a specific palindrome sequence, A and B, for a specific restriction enzyme:
How many fragments would be produced if the DNA is cut by that enzyme?
Number each fragment
Which fragment would be the largest?
Which fragment would be the smallest?
Step by step
Solved in 2 steps with 1 images