Cumulative standardized normal distribution table (page 1) 0 Cumulative standardized normal distribution table (page 2) Cumulative Probabilities Cumulative Probabilities z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 -3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00103 0.00100 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 -2.9 -2.8 0.5279 0.5319 0.5359 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.0026 0.0025 0.5636 0.5675 0.5714 0.5753 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 -2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 -2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 -2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 0.5 0.6915 0.6950 0.6985 -2.4 0.0082 0.0080 0.7019 0.7054 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 -2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7518 0.7549 0.7 0.7580 0.7612 0.7642 0.7673 0.7704 -2.2 0.0139 0.0136 0.0132 0.7734 0.7764 0.7794 0.7823 0.7852 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 -2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 0.9 -2.0 0.0228 0.0222 0.0217 0.8159 0.0212 0.0207 0.0202 0.0197 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.0192 0.0188 0.0183 0.8365 0.8389 -1.9 0.0287 0.0281 0.0274 1.0 0.0268 0.0262 0.0256 0.0250 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 0.0244 0.0239 0.0233 -1.8 0.0359 1.1 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.8643 0.8665 0.0307 0.0301 0.0294 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 -1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 -1.6 0.0548 1.3 0.9032 0.9049 0.0537 0.9066 0.9082 0.9099 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.9115 0.9131 0.9147 0.9162 0.9177 0.0455 -1.5 0.0668 0.0655 1.4 0.9192 0.0643 0.0630 0.0618 0.0606 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.0594 0.0582 0.0571 0.0559 0.9319 -1.4 0.0808 0.0793 0.0778 0.0764 0.0749 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.0735 0.9394 0.9406 0.9418 0.9429 0.9441 0.0721 0.0708 0.0694 0.0681 -1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 -1.2 0.1151 1.7 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.1020 0.1003 0.0985 0.9616 0.9625 0.9633 -1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 1.8 0.9641 0.1190 0.1170 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 -1.0 0.1587 1.9 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.9713 0.9719 0.9726 0.1401 0.1379 0.9732 0.9738 0.9744 0.9750 0.9756 0.9699 0.9761 0.9767 0.9706 -0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 2.0 0.1635 0.1611 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 -0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 2.1 0.1894 0.1867 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 -0.7 0.2420 0.2388 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 -0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 2.3 0.2482 0.2451 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 -0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 -0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 -0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 -0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 -0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 -0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4286 0.4681 0.4641 0.4247 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99897 0.99900 Entry represents area under the cumulative standardized normal distribution from - ∞ to Z. Entry represents area under the cumulative standardized normal distribution from - ∞ to Z. Given a standardized normal distribution (with a mean of 0 and a standard deviation of 1), complete parts (a) through (d) below. Click here to view page 1 of the cumulative standardized normal distribution table. Click here to view page 2 of the cumulative standardized normal distribution table. ... a. What is the probability that Z is between - 1.59 and 1.88? The probability that Z is between - 1.59 and 1.88 is ☐ . (Round to four decimal places as needed.) b. What is the probability that Z is less than -1.59 or greater than 1.88? The probability that Z is less than -1.59 or greater than 1.88 is (Round to four decimal places as needed.) c. What is the value of Z if only 1% of all possible Z values are larger? The value of Z if only 1% of all possible Z values are larger is (Round to two decimal places as needed.) d. Between what two values of Z (symmetrically distributed around the mean) will 98.36% of all possible Z values be contained? The two values of Z for which 98.36% of all possible Z values are contained between are (Use ascending order. Round to two decimal places as needed.) and
Cumulative standardized normal distribution table (page 1) 0 Cumulative standardized normal distribution table (page 2) Cumulative Probabilities Cumulative Probabilities z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 -3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00103 0.00100 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 -2.9 -2.8 0.5279 0.5319 0.5359 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.0026 0.0025 0.5636 0.5675 0.5714 0.5753 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 -2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 -2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 -2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 0.5 0.6915 0.6950 0.6985 -2.4 0.0082 0.0080 0.7019 0.7054 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 -2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7518 0.7549 0.7 0.7580 0.7612 0.7642 0.7673 0.7704 -2.2 0.0139 0.0136 0.0132 0.7734 0.7764 0.7794 0.7823 0.7852 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 -2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 0.9 -2.0 0.0228 0.0222 0.0217 0.8159 0.0212 0.0207 0.0202 0.0197 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.0192 0.0188 0.0183 0.8365 0.8389 -1.9 0.0287 0.0281 0.0274 1.0 0.0268 0.0262 0.0256 0.0250 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 0.0244 0.0239 0.0233 -1.8 0.0359 1.1 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.8643 0.8665 0.0307 0.0301 0.0294 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 -1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 -1.6 0.0548 1.3 0.9032 0.9049 0.0537 0.9066 0.9082 0.9099 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.9115 0.9131 0.9147 0.9162 0.9177 0.0455 -1.5 0.0668 0.0655 1.4 0.9192 0.0643 0.0630 0.0618 0.0606 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.0594 0.0582 0.0571 0.0559 0.9319 -1.4 0.0808 0.0793 0.0778 0.0764 0.0749 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.0735 0.9394 0.9406 0.9418 0.9429 0.9441 0.0721 0.0708 0.0694 0.0681 -1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 -1.2 0.1151 1.7 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.1020 0.1003 0.0985 0.9616 0.9625 0.9633 -1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 1.8 0.9641 0.1190 0.1170 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 -1.0 0.1587 1.9 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.9713 0.9719 0.9726 0.1401 0.1379 0.9732 0.9738 0.9744 0.9750 0.9756 0.9699 0.9761 0.9767 0.9706 -0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 2.0 0.1635 0.1611 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 -0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 2.1 0.1894 0.1867 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 -0.7 0.2420 0.2388 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 -0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 2.3 0.2482 0.2451 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 -0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 -0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 -0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 -0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 -0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 -0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4286 0.4681 0.4641 0.4247 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99897 0.99900 Entry represents area under the cumulative standardized normal distribution from - ∞ to Z. Entry represents area under the cumulative standardized normal distribution from - ∞ to Z. Given a standardized normal distribution (with a mean of 0 and a standard deviation of 1), complete parts (a) through (d) below. Click here to view page 1 of the cumulative standardized normal distribution table. Click here to view page 2 of the cumulative standardized normal distribution table. ... a. What is the probability that Z is between - 1.59 and 1.88? The probability that Z is between - 1.59 and 1.88 is ☐ . (Round to four decimal places as needed.) b. What is the probability that Z is less than -1.59 or greater than 1.88? The probability that Z is less than -1.59 or greater than 1.88 is (Round to four decimal places as needed.) c. What is the value of Z if only 1% of all possible Z values are larger? The value of Z if only 1% of all possible Z values are larger is (Round to two decimal places as needed.) d. Between what two values of Z (symmetrically distributed around the mean) will 98.36% of all possible Z values be contained? The two values of Z for which 98.36% of all possible Z values are contained between are (Use ascending order. Round to two decimal places as needed.) and
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman