In a recent year, about 22% of Americans 15 years and older are single. What is the probability that in a random sample of 180 Americans 15 or older, more than 27 are single? Round the final answer to at least 4 decimal places and intermediate z-value calculations to 2 decimal places. P( X>27)=

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question

In a recent year, about 22% of Americans 15 years and older are single. What is the probability that in a random sample of 180 Americans 15 or older, more than 27 are single? Round the final answer to at least 4 decimal places and intermediate z-value calculations to 2 decimal places.

  • P( X>27)= 
TABLE E The Standard Normal Distribution
Cumulative Standard Normal Distribution
.00
.01
02
03
04
.05
.06
.07
.08
.09
-3.4
.0003
.0003
0003
.0003
0003
.0003
.0003
.0003
.0003
.0002
-3.3
.0005
.0005
.0005
0004
0004
.0004
.0004
.0004
.0004
.0003
-3.2
.0007
.0007
0006
.0006
0006
.0006
.0006
.0005
.0005
.0005
-3.1
.0010
.0009
.0009
.0009
0008
0008
0008
.0008
.0007
.0007
-3.0
.0013
.0013
.0013
0012
0012
0011
0011
.0011
0010
.0010
-2.9
.0019
.0018
.0018
0017
0016
0016
0015
.0015
.0014
.0014
-2.8
.0026
.0025
0024
.0023
.0023
0022
0021
0021
.0020
.0019
-2.7
.0035
.0034
0033
.0032
0031
0030
.0029
.0028
.0027
.0026
-2.6
.0047
.0045
0044
0043
.0041
0040
0039
0038
.0037
0036
0059
0078
-2.5
.0062
.0060
.0057
0055
0054
0052
.0051
0049
.0048
-2.4
.0082
.0080
.0075
0073
.0071
.0069
.0068
.0066
.0064
-2.3
.0107
0104
0102
.0099
0096
0094
.0091
.0089
0087
.0084
-2.2
.0139
0136
0132
.0129
0125
0122
.0119
.0116
.0113
.0110
-2.1
0179
0174
0170
0166
0162
0158
0154
.0150
0146
.0143
-2.0
.0228
0222
.0217
.0212
0207
0202
0197
.0192
0188
.0183
-1.9
.0287
0281
0274
.0268
.0262
0256
0250
.0244
.0239
.0233
-1.8
0359
0351
0344
0336
.0329
.0322
.0314
0307
.0301
.0294
-1.7
.0446
0436
0427
0418
.0409
0401
.0392
0384
0375
.0367
-1.6
.0548
0537
.0526
0516
.0505
0495
.0485
0475
0465
.0455
-1.5
.0668
.0655
0643
0630
0618
0606
.0594
0582
0571
.0559
-1.4
.0808
.0793
.0778
.0764
.0749
.0735
0721
.0708
0694
.0681
-1.3
.0968
0951
.0934
.0918
0901
0885
.0869
.0853
.0838
.0823
1093
.1056
.1038
1003
.0985
.1112
.1314
.1539
.1788
-1.2
.1151
.1131
.1075
.1020
.1251
.1230
1210
.1190
.1170
.1292
.1515
1762
2033
1271
1335
.1562
-1.1
.1357
-1.0
.1587
1492
.1469
.1446
1423
.1401
.1379
1635
.1711
.1977
.1685
.1949
-0.9
.1841
.1814
1736
1660
.1611
-0.8
.2119
2090
.2061
.2005
1922
.1894
.1867
-0.7
.2420
2389
2358
2327
2296
2266
2236
.2206
.2177
.2148
.2611
,2578
2546
.2514
2483
.2451
.2676
.3015
-0.6
.2743
2709
2643
2843
.2776
.2877
3228
.2810
2981
.3336
2946
3300
-0.5
.3085
.3050
2912
.3372
.3264
.3192
.3156
.3121
.3446
3821
4207
-0.4
.3409
.3632
.3594
.3557
.3520
.3483
3669
4052
4443
-0,3
.3783
.3745
.3707
4168
.4129
.4090
.4013
.3974
.3936
.3897
.3859
-0.2
-0.1
4562
.4522
4483
.4404
4364
4325
4286
4247
4602
-0.0
4960
.4920
4880
.4840
4801
.4761
.4721
.4681
4641
5000
For z values less than-3.49, use 0.0001.
Transcribed Image Text:TABLE E The Standard Normal Distribution Cumulative Standard Normal Distribution .00 .01 02 03 04 .05 .06 .07 .08 .09 -3.4 .0003 .0003 0003 .0003 0003 .0003 .0003 .0003 .0003 .0002 -3.3 .0005 .0005 .0005 0004 0004 .0004 .0004 .0004 .0004 .0003 -3.2 .0007 .0007 0006 .0006 0006 .0006 .0006 .0005 .0005 .0005 -3.1 .0010 .0009 .0009 .0009 0008 0008 0008 .0008 .0007 .0007 -3.0 .0013 .0013 .0013 0012 0012 0011 0011 .0011 0010 .0010 -2.9 .0019 .0018 .0018 0017 0016 0016 0015 .0015 .0014 .0014 -2.8 .0026 .0025 0024 .0023 .0023 0022 0021 0021 .0020 .0019 -2.7 .0035 .0034 0033 .0032 0031 0030 .0029 .0028 .0027 .0026 -2.6 .0047 .0045 0044 0043 .0041 0040 0039 0038 .0037 0036 0059 0078 -2.5 .0062 .0060 .0057 0055 0054 0052 .0051 0049 .0048 -2.4 .0082 .0080 .0075 0073 .0071 .0069 .0068 .0066 .0064 -2.3 .0107 0104 0102 .0099 0096 0094 .0091 .0089 0087 .0084 -2.2 .0139 0136 0132 .0129 0125 0122 .0119 .0116 .0113 .0110 -2.1 0179 0174 0170 0166 0162 0158 0154 .0150 0146 .0143 -2.0 .0228 0222 .0217 .0212 0207 0202 0197 .0192 0188 .0183 -1.9 .0287 0281 0274 .0268 .0262 0256 0250 .0244 .0239 .0233 -1.8 0359 0351 0344 0336 .0329 .0322 .0314 0307 .0301 .0294 -1.7 .0446 0436 0427 0418 .0409 0401 .0392 0384 0375 .0367 -1.6 .0548 0537 .0526 0516 .0505 0495 .0485 0475 0465 .0455 -1.5 .0668 .0655 0643 0630 0618 0606 .0594 0582 0571 .0559 -1.4 .0808 .0793 .0778 .0764 .0749 .0735 0721 .0708 0694 .0681 -1.3 .0968 0951 .0934 .0918 0901 0885 .0869 .0853 .0838 .0823 1093 .1056 .1038 1003 .0985 .1112 .1314 .1539 .1788 -1.2 .1151 .1131 .1075 .1020 .1251 .1230 1210 .1190 .1170 .1292 .1515 1762 2033 1271 1335 .1562 -1.1 .1357 -1.0 .1587 1492 .1469 .1446 1423 .1401 .1379 1635 .1711 .1977 .1685 .1949 -0.9 .1841 .1814 1736 1660 .1611 -0.8 .2119 2090 .2061 .2005 1922 .1894 .1867 -0.7 .2420 2389 2358 2327 2296 2266 2236 .2206 .2177 .2148 .2611 ,2578 2546 .2514 2483 .2451 .2676 .3015 -0.6 .2743 2709 2643 2843 .2776 .2877 3228 .2810 2981 .3336 2946 3300 -0.5 .3085 .3050 2912 .3372 .3264 .3192 .3156 .3121 .3446 3821 4207 -0.4 .3409 .3632 .3594 .3557 .3520 .3483 3669 4052 4443 -0,3 .3783 .3745 .3707 4168 .4129 .4090 .4013 .3974 .3936 .3897 .3859 -0.2 -0.1 4562 .4522 4483 .4404 4364 4325 4286 4247 4602 -0.0 4960 .4920 4880 .4840 4801 .4761 .4721 .4681 4641 5000 For z values less than-3.49, use 0.0001.
TABLE E (continued)
Cumulative Standard Normal Distribution
.00
.01
.02
.03
.04
05
.06
.07
.08
.09
0.0
.5000
.5040
.5080
.5120
.5160
5199
.5239
.5279
.5319
.5359
0.1
.5398
.5438
.5478
5517
5557
5596
.5636
.5675
5714
.5753
0.2
.5793
.5832
5871
5910
5948
.5987
.6026
.6064
6103
6141
0.3
.6179
.6217
6255
6293
6331
6368
6406
6443
.6480
6517
0.4
6554
.6591
6628
6664
6700
6736
6772
.6808
.6844
.6879
0.5
.6915
.6950
6985
7019
.7054
7088
.7123
.7157
.7190
.7224
0.6
.7257
.7291
.7324
7357
.7389
.7422
.7454
.7764
7486
7517
.7549
0.7
.7580
7611
.7642
.7673
.7704
.7734
7794
.7823
.7852
0.8
.7881
.7910
.7939
.7967
.7995
8023
8051
.8106
8078
.8133
.8159
8212]
0.9
.8186
.8238
8264
8289
8315
8340
.8365
.8389
1.0
.8413
8438
.8461
.8485
.8508
.8531
.8554
8577
8599
8621
1.1
.8643
8665
8686
.8708
.8729
8749
.8770
8790
88 10
8830
1.2
8849
.8869
.8888
8907
.8925
.8944
.8962
.8980
.8997
9015
1.3
9032
9049
9066
9082
9099
9115
9131
9147
.9162
9177
1.4
9192
9207
,9222
.9236
9251
.9265
9279
.9292
.9306
9319
1.5
9332
9345
9357
9370
9382
9394
9406
9418
.9429
.9441
1.6
,9452
9463
9474
.9484
.9495
.9505
9515
.9525
9535
.9545
1.7
.9554
9564
9573
9582
9591
9599
9608
9616
9625
9633
1.8
.9641
,9649
9656
9664
9671
9678
9686
,9693
9699
9706
1.9
.9713
9719
9726
9732
9738
9744
9750
9756
9761
9767
2.0
.9772
.9778
.9783
.9788
.9793
9798
,9803
9808
.9817
2.1
9821
9826
9830
9834
9838
9842
9846
9850
9854
9857
2.2
2.3
.9861
9864
9868
9871
.9875
9878
9881
9884
.9887
9890
.9893
,9896
9898
.9901
9904
9906
9909
.9911
.9913
9916
2.4
.9918
9920
9922
.9925
,9927
9929
9931
.9932
.9934
9936
9940
9955
2.5
.9938
9941
9943
9945
9946
9948
9949
9951
9952
2.6
9953
,9956
,9957
9959
,9960
9961
.9962
.9963
9964
2.7
9965
9966
9967
9968
9969
9970
,9971
9972
9973
9974
2.8
,9974
9975
9976
9977
.9977
9978
9979
9979
9980
.9981
2.9
9981
9982
9982
9983
9984
9984
9985
9985
9986
9986
3.0
9987
9987
9987
9988
.9988
.9989
9989
9989
9990
9990
3.1
.9990
9991
9991
9991
9992
.9992
9992
,9992
9993
9993
3.2
.9993
9993
9994
9994
9994
.9994
.9994
,9995
.9995
.9995
3.3
,9995
9995
9995
9996
9996
9996
9996
9996
9996
9997
3.4
9997
9997.
9997
9997
9997
9997
,9997
9997
9997
9998
For z values greater than 3.49, use 0.9999,
Transcribed Image Text:TABLE E (continued) Cumulative Standard Normal Distribution .00 .01 .02 .03 .04 05 .06 .07 .08 .09 0.0 .5000 .5040 .5080 .5120 .5160 5199 .5239 .5279 .5319 .5359 0.1 .5398 .5438 .5478 5517 5557 5596 .5636 .5675 5714 .5753 0.2 .5793 .5832 5871 5910 5948 .5987 .6026 .6064 6103 6141 0.3 .6179 .6217 6255 6293 6331 6368 6406 6443 .6480 6517 0.4 6554 .6591 6628 6664 6700 6736 6772 .6808 .6844 .6879 0.5 .6915 .6950 6985 7019 .7054 7088 .7123 .7157 .7190 .7224 0.6 .7257 .7291 .7324 7357 .7389 .7422 .7454 .7764 7486 7517 .7549 0.7 .7580 7611 .7642 .7673 .7704 .7734 7794 .7823 .7852 0.8 .7881 .7910 .7939 .7967 .7995 8023 8051 .8106 8078 .8133 .8159 8212] 0.9 .8186 .8238 8264 8289 8315 8340 .8365 .8389 1.0 .8413 8438 .8461 .8485 .8508 .8531 .8554 8577 8599 8621 1.1 .8643 8665 8686 .8708 .8729 8749 .8770 8790 88 10 8830 1.2 8849 .8869 .8888 8907 .8925 .8944 .8962 .8980 .8997 9015 1.3 9032 9049 9066 9082 9099 9115 9131 9147 .9162 9177 1.4 9192 9207 ,9222 .9236 9251 .9265 9279 .9292 .9306 9319 1.5 9332 9345 9357 9370 9382 9394 9406 9418 .9429 .9441 1.6 ,9452 9463 9474 .9484 .9495 .9505 9515 .9525 9535 .9545 1.7 .9554 9564 9573 9582 9591 9599 9608 9616 9625 9633 1.8 .9641 ,9649 9656 9664 9671 9678 9686 ,9693 9699 9706 1.9 .9713 9719 9726 9732 9738 9744 9750 9756 9761 9767 2.0 .9772 .9778 .9783 .9788 .9793 9798 ,9803 9808 .9817 2.1 9821 9826 9830 9834 9838 9842 9846 9850 9854 9857 2.2 2.3 .9861 9864 9868 9871 .9875 9878 9881 9884 .9887 9890 .9893 ,9896 9898 .9901 9904 9906 9909 .9911 .9913 9916 2.4 .9918 9920 9922 .9925 ,9927 9929 9931 .9932 .9934 9936 9940 9955 2.5 .9938 9941 9943 9945 9946 9948 9949 9951 9952 2.6 9953 ,9956 ,9957 9959 ,9960 9961 .9962 .9963 9964 2.7 9965 9966 9967 9968 9969 9970 ,9971 9972 9973 9974 2.8 ,9974 9975 9976 9977 .9977 9978 9979 9979 9980 .9981 2.9 9981 9982 9982 9983 9984 9984 9985 9985 9986 9986 3.0 9987 9987 9987 9988 .9988 .9989 9989 9989 9990 9990 3.1 .9990 9991 9991 9991 9992 .9992 9992 ,9992 9993 9993 3.2 .9993 9993 9994 9994 9994 .9994 .9994 ,9995 .9995 .9995 3.3 ,9995 9995 9995 9996 9996 9996 9996 9996 9996 9997 3.4 9997 9997. 9997 9997 9997 9997 ,9997 9997 9997 9998 For z values greater than 3.49, use 0.9999,
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman