In a recent year, about 22% of Americans 15 years and older are single. What is the probability that in a random sample of 180 Americans 15 or older, more than 27 are single? Round the final answer to at least 4 decimal places and intermediate z-value calculations to 2 decimal places. P( X>27)=
Contingency Table
A contingency table can be defined as the visual representation of the relationship between two or more categorical variables that can be evaluated and registered. It is a categorical version of the scatterplot, which is used to investigate the linear relationship between two variables. A contingency table is indeed a type of frequency distribution table that displays two variables at the same time.
Binomial Distribution
Binomial is an algebraic expression of the sum or the difference of two terms. Before knowing about binomial distribution, we must know about the binomial theorem.
In a recent year, about 22% of Americans 15 years and older are single. What is the
- P( X>27)=

![TABLE E (continued)
Cumulative Standard Normal Distribution
.00
.01
.02
.03
.04
05
.06
.07
.08
.09
0.0
.5000
.5040
.5080
.5120
.5160
5199
.5239
.5279
.5319
.5359
0.1
.5398
.5438
.5478
5517
5557
5596
.5636
.5675
5714
.5753
0.2
.5793
.5832
5871
5910
5948
.5987
.6026
.6064
6103
6141
0.3
.6179
.6217
6255
6293
6331
6368
6406
6443
.6480
6517
0.4
6554
.6591
6628
6664
6700
6736
6772
.6808
.6844
.6879
0.5
.6915
.6950
6985
7019
.7054
7088
.7123
.7157
.7190
.7224
0.6
.7257
.7291
.7324
7357
.7389
.7422
.7454
.7764
7486
7517
.7549
0.7
.7580
7611
.7642
.7673
.7704
.7734
7794
.7823
.7852
0.8
.7881
.7910
.7939
.7967
.7995
8023
8051
.8106
8078
.8133
.8159
8212]
0.9
.8186
.8238
8264
8289
8315
8340
.8365
.8389
1.0
.8413
8438
.8461
.8485
.8508
.8531
.8554
8577
8599
8621
1.1
.8643
8665
8686
.8708
.8729
8749
.8770
8790
88 10
8830
1.2
8849
.8869
.8888
8907
.8925
.8944
.8962
.8980
.8997
9015
1.3
9032
9049
9066
9082
9099
9115
9131
9147
.9162
9177
1.4
9192
9207
,9222
.9236
9251
.9265
9279
.9292
.9306
9319
1.5
9332
9345
9357
9370
9382
9394
9406
9418
.9429
.9441
1.6
,9452
9463
9474
.9484
.9495
.9505
9515
.9525
9535
.9545
1.7
.9554
9564
9573
9582
9591
9599
9608
9616
9625
9633
1.8
.9641
,9649
9656
9664
9671
9678
9686
,9693
9699
9706
1.9
.9713
9719
9726
9732
9738
9744
9750
9756
9761
9767
2.0
.9772
.9778
.9783
.9788
.9793
9798
,9803
9808
.9817
2.1
9821
9826
9830
9834
9838
9842
9846
9850
9854
9857
2.2
2.3
.9861
9864
9868
9871
.9875
9878
9881
9884
.9887
9890
.9893
,9896
9898
.9901
9904
9906
9909
.9911
.9913
9916
2.4
.9918
9920
9922
.9925
,9927
9929
9931
.9932
.9934
9936
9940
9955
2.5
.9938
9941
9943
9945
9946
9948
9949
9951
9952
2.6
9953
,9956
,9957
9959
,9960
9961
.9962
.9963
9964
2.7
9965
9966
9967
9968
9969
9970
,9971
9972
9973
9974
2.8
,9974
9975
9976
9977
.9977
9978
9979
9979
9980
.9981
2.9
9981
9982
9982
9983
9984
9984
9985
9985
9986
9986
3.0
9987
9987
9987
9988
.9988
.9989
9989
9989
9990
9990
3.1
.9990
9991
9991
9991
9992
.9992
9992
,9992
9993
9993
3.2
.9993
9993
9994
9994
9994
.9994
.9994
,9995
.9995
.9995
3.3
,9995
9995
9995
9996
9996
9996
9996
9996
9996
9997
3.4
9997
9997.
9997
9997
9997
9997
,9997
9997
9997
9998
For z values greater than 3.49, use 0.9999,](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F19d99d37-36e0-4a19-bb58-908d9296b117%2F08a56a2e-9063-45a8-ac98-9c3b8c154a77%2Foabnz2_processed.jpeg&w=3840&q=75)

Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images









