For 3D free electron gas, the density of states counts the number of degenerate electron states dn per energy interval dE around a given energy E as g(E): = dn dE 3 (2m₂)2V 1 E2 2π²ħ³ At absolute zero temperature, N electrons can fill up all low lying energy levels (following Pauli exclusion principle) up to a given energy level E called Fermi energy. From the density of states, what is the relation between the total electron states N below a given energy E? Use this result to show that the Fermi energy EF is given by - - 2010 (307² M)³ ħ² 3π²N\3 EF 2me V
For 3D free electron gas, the density of states counts the number of degenerate electron states dn per energy interval dE around a given energy E as g(E): = dn dE 3 (2m₂)2V 1 E2 2π²ħ³ At absolute zero temperature, N electrons can fill up all low lying energy levels (following Pauli exclusion principle) up to a given energy level E called Fermi energy. From the density of states, what is the relation between the total electron states N below a given energy E? Use this result to show that the Fermi energy EF is given by - - 2010 (307² M)³ ħ² 3π²N\3 EF 2me V
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images