Consider the molecules: CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH2. let’s assume that the 10 electrons that make up the double bonds can exist everywhere along the carbon chains. The electrons can then be considered as particles in a box; the ends of the molecule correspond to the boundaries of the box with a finite or zero potential energy inside. In this “molecular box”, 2 electrons can occupy an energy level. What are quantum states that the electrons from this molecule can occupy in the ground state? What’s the smallest frequency of light that can excite the electron? Briefly explain why. Note that the length of a C-C bond is about 1.54A and the length of a C=C bond is 1.34A to allow you to estimate the length of the “molecular box”
Consider the molecules: CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH2. let’s assume that the 10 electrons that make up the double bonds can exist everywhere along the carbon chains. The electrons can then be considered as particles in a box; the ends of the molecule correspond to the boundaries of the box with a finite or zero potential energy inside. In this “molecular box”, 2 electrons can occupy an energy level. What are quantum states that the electrons from this molecule can occupy in the ground state? What’s the smallest
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images