Consider oil flowing through a horizontal pipe at a rate of 3 liter/s. There are two sections of the pipe with diameters 10 cm and 7 cm and the two sections are connected by a smooth reducing section as shown in the schematic. We use a manometer with glycerin as the manometer fluid (with glycerin density of Pglycerin 1,260 kg/m³) to measure the pressure difference between the two pipe sections. Assume that frictional effects are negligible and consider specific gravity of oil as SGoil = 0.76. What is the manometer reading, h (i.e. differential height of glycerin between the two arms of the manometer)?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Consider oil flowing through a horizontal pipe at a rate of 3 liter/s. There are two sections
of the pipe with diameters 10 cm and 7 cm and the two sections are connected by a smooth
reducing section as shown in the schematic. We use a manometer with glycerin as the
manometer fluid (with glycerin density of Pglycerin 1,260 kg/m³) to measure the pressure
difference between the two pipe sections. Assume that frictional effects are negligible and
consider specific gravity of oil as SGoil = 0.76.
What is the manometer reading, h (i.e. differential height of glycerin between the two
arms of the manometer)?
10 cm
I
h
T
7 cm-
Transcribed Image Text:Consider oil flowing through a horizontal pipe at a rate of 3 liter/s. There are two sections of the pipe with diameters 10 cm and 7 cm and the two sections are connected by a smooth reducing section as shown in the schematic. We use a manometer with glycerin as the manometer fluid (with glycerin density of Pglycerin 1,260 kg/m³) to measure the pressure difference between the two pipe sections. Assume that frictional effects are negligible and consider specific gravity of oil as SGoil = 0.76. What is the manometer reading, h (i.e. differential height of glycerin between the two arms of the manometer)? 10 cm I h T 7 cm-
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Fluid Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY