drug accumulátión in the Lexapro is an antidepressant that affects the levels of certain chemicals in the brain that may be altered " people surfering from depression or anxiety. A typical starting dose is 10 mg taken once daily. After the medication has been fully metabolized, it is eliminated continuously from the body at a rate of 2.3% per hour. Steady-state concentrations are achieved within 7-10 days of administration. Source: https://pubmed.ncbi.nlm.nih.gov approximately 1. A patient with takes their first dose of Lexapro. Use the exponential model P(t) = Poe-ktto show how much Lexapro is left one day (or 24 hours) later. Show your work. PCt) = 10e -0.023+ P(24)=10e-0.023(24 (5.76ma 2. This patient takes a second dose of Lexapro 24 hours after the first dose. With the amount remaining from the previous dose (see question #1), how much will they mow have in their bloodstream? Show your work. 5.76mg +10mg I DAY bw のL'SI g) 3. How much of this amount is left 24 hours after taking that that second dose? Show your work. inok P(z4) =15,76e-0.023+ 3D15,76 2DAYS (h2-サ -19.07ma 4. Complete this table, displaying how Lexapro accumulates in the body over the course of 10 days. Amount Total Amount in Blood Stream Time Remaining from Previous Doses New Dose (days) Added (mg) P(24)=D19.07e- 0,023+ (+=B) (Bu) NA 0. 10 5.76 P/24)=20.98e-0,023 + (4=24), 15.76 1. 10 9.07 19.07 20.98 10 10.98 P/z4) =D 22.08 e (22こ/ S DAYS 4. 12.71 5. P(z4) =22.71e-0.023+(24) 22.7le 9. Shyo n 23.08 23.29 23.41 %3D 13.29 -0.0234 P/z4) =23.08e 8. 10 .48 13.52 (t=24). SAVOL (h2=t) 6. 1. P(24)3D23,29e-0.023 + 23.52 P/24)=D23,41 e (+=24), 9.DAMS %3D Page 175 P/24) = 23.48e- 0,0234 456 780 Let's examine what is happening using a different model: 5. Run logistic regression (as demonstrated in the lecture for section 4.7) on your completed data table (see right) to find a model for the total amount in the blood stream as a Time Total Amount in (days) Blood Stream (mg) function of t in hours. Call this model A(t). Store this 15.76 1. model in Y1 in your calculator and then write the model below. 19.07 20,98 2. 3. 80'22 23,29 23.41 Use your derivative rules to find a model for the instantaneous rate of change of the amount in the blood stream as a function of time in hours, A'(t). Show your work in the space below. 6. 23.48 6. 23,52 Use your model for A'(t) and/or the nDeriv function to calculate how quickly the Lexapro quantity is increasing: 7. at time 2 days b. at 4 days C. at 6 days. a. 8. Using your understanding about the logistic model, what will happen to the total amount in the bloodstream if this patient continues this routine long- term? Draw a reasonable sketch of A(t) to support your claim.
drug accumulátión in the Lexapro is an antidepressant that affects the levels of certain chemicals in the brain that may be altered " people surfering from depression or anxiety. A typical starting dose is 10 mg taken once daily. After the medication has been fully metabolized, it is eliminated continuously from the body at a rate of 2.3% per hour. Steady-state concentrations are achieved within 7-10 days of administration. Source: https://pubmed.ncbi.nlm.nih.gov approximately 1. A patient with takes their first dose of Lexapro. Use the exponential model P(t) = Poe-ktto show how much Lexapro is left one day (or 24 hours) later. Show your work. PCt) = 10e -0.023+ P(24)=10e-0.023(24 (5.76ma 2. This patient takes a second dose of Lexapro 24 hours after the first dose. With the amount remaining from the previous dose (see question #1), how much will they mow have in their bloodstream? Show your work. 5.76mg +10mg I DAY bw のL'SI g) 3. How much of this amount is left 24 hours after taking that that second dose? Show your work. inok P(z4) =15,76e-0.023+ 3D15,76 2DAYS (h2-サ -19.07ma 4. Complete this table, displaying how Lexapro accumulates in the body over the course of 10 days. Amount Total Amount in Blood Stream Time Remaining from Previous Doses New Dose (days) Added (mg) P(24)=D19.07e- 0,023+ (+=B) (Bu) NA 0. 10 5.76 P/24)=20.98e-0,023 + (4=24), 15.76 1. 10 9.07 19.07 20.98 10 10.98 P/z4) =D 22.08 e (22こ/ S DAYS 4. 12.71 5. P(z4) =22.71e-0.023+(24) 22.7le 9. Shyo n 23.08 23.29 23.41 %3D 13.29 -0.0234 P/z4) =23.08e 8. 10 .48 13.52 (t=24). SAVOL (h2=t) 6. 1. P(24)3D23,29e-0.023 + 23.52 P/24)=D23,41 e (+=24), 9.DAMS %3D Page 175 P/24) = 23.48e- 0,0234 456 780 Let's examine what is happening using a different model: 5. Run logistic regression (as demonstrated in the lecture for section 4.7) on your completed data table (see right) to find a model for the total amount in the blood stream as a Time Total Amount in (days) Blood Stream (mg) function of t in hours. Call this model A(t). Store this 15.76 1. model in Y1 in your calculator and then write the model below. 19.07 20,98 2. 3. 80'22 23,29 23.41 Use your derivative rules to find a model for the instantaneous rate of change of the amount in the blood stream as a function of time in hours, A'(t). Show your work in the space below. 6. 23.48 6. 23,52 Use your model for A'(t) and/or the nDeriv function to calculate how quickly the Lexapro quantity is increasing: 7. at time 2 days b. at 4 days C. at 6 days. a. 8. Using your understanding about the logistic model, what will happen to the total amount in the bloodstream if this patient continues this routine long- term? Draw a reasonable sketch of A(t) to support your claim.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning