Below is an answer I got for trying to solve a recurrence relation by substitution, however, I am confused on step 3 sum the constants. Can you explain the geometric series here, as well as the rest of step 3 and step 4 solve for the base case?   Solving recurrence relations by substitution involves finding a pattern and then using mathematical induction to prove it. Let's walk through it step-by-step.   The recurrence relation you provided is:   T(n)=2T(n−3)+7   Step 1: Write out the terms by substitution   Let's start by expanding the recurrence relation to see if a pattern emerges.   1: Substitute once:               T(n)=2T(n−3)+7 2: Substitute T(n−3) in terms of T(n−6):              T(n−3)=2T(n−6)+7      Substituting this back into the original recurrence:                           T(n)=2(2T(n−6)+7)+7                                     =4T(n−6)+2⋅7+7                                    =4T(n−6)+14+7                                    =4T(n−6)+21   3: Substitute again to express T(n−6) in terms of T(n−9):                         T(n−6)=2T(n−9)+7           Substituting back, we get:                T(n)=4(2T(n−9)+7)+21                            =8T(n−9)+4⋅7+21                           =8T(n−9)+49 After a few substitutions, we see that each step introduces a factor of 2 for T and adds a multiple of 7 to the constant.   Step 2: Generalize the pattern From our substitutions, a pattern seems to emerge: T(n)=2kT(n−3k)+7⋅(2k−1+2k−2+⋯+1)     Step 3: Sum the constants The constants form a geometric series. The sum of a geometric series 1+r+r2+⋯+rk−1  is r−1rk−1​​. Here, r=2, so we have:   7⋅(2k−1+2k−2+⋯+1)=7⋅2−12k−1​=7(2k−1)   Thus, we can rewrite T(n) as: T(n)=2kT(n−3k)+7⋅(2k−1)     Step 4: Solve for the base case To get rid of T(n−3k), choose k such that n−3k hits the base case. Suppose the base case is T(0), then let k=3n​​, so n−3k=0.   Then: T(n)=23n​T(0)+7⋅(23n​−1)   If T(0) is given, we can substitute it in to get a closed-form solution. If not, the solution is in terms of T(0): T(n)=23n​T(0)+7⋅(23n​−1) that's the solution by substitution!

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Below is an answer I got for trying to solve a recurrence relation by substitution, however, I am confused on step 3 sum the constants. Can you explain the geometric series here, as well as the rest of step 3 and step 4 solve for the base case?

 

Solving recurrence relations by substitution involves finding a pattern and then using mathematical induction to prove it. Let's walk through it step-by-step.

 

The recurrence relation you provided is:

 

T(n)=2T(n−3)+7

 

Step 1: Write out the terms by substitution

 

Let's start by expanding the recurrence relation to see if a pattern emerges.

 

1: Substitute once:

              T(n)=2T(n−3)+7

2: Substitute T(n−3) in terms of T(n−6):

             T(n−3)=2T(n−6)+7

     Substituting this back into the original recurrence:

                          T(n)=2(2T(n−6)+7)+7

                                    =4T(n−6)+2⋅7+7

                                   =4T(n−6)+14+7 

                                  =4T(n−6)+21

 

3: Substitute again to express T(n−6) in terms of T(n−9):

 

                      T(n−6)=2T(n−9)+7

          Substituting back, we get:

               T(n)=4(2T(n−9)+7)+21

                           =8T(n−9)+4⋅7+21

                          =8T(n−9)+49

After a few substitutions, we see that each step introduces a factor of 2 for T and adds a multiple of 7 to the constant.

 

Step 2: Generalize the pattern

From our substitutions, a pattern seems to emerge:

T(n)=2kT(n−3k)+7⋅(2k−1+2k−2+⋯+1)

 

 

Step 3: Sum the constants

The constants form a geometric series. The sum of a geometric series 1+r+r2+⋯+rk−1  is r−1rk−1​​. Here, r=2, so we have:

 

7⋅(2k−1+2k−2+⋯+1)=7⋅2−12k−1​=7(2k−1)

 

Thus, we can rewrite T(n) as:

T(n)=2kT(n−3k)+7⋅(2k−1)

 

 

Step 4: Solve for the base case

To get rid of T(n−3k), choose k such that n−3k hits the base case. Suppose the base case is T(0), then let k=3n​​, so n−3k=0.

 

Then:

T(n)=23n​T(0)+7⋅(23n​−1)

 

If T(0) is given, we can substitute it in to get a closed-form solution. If not, the solution is in terms of T(0):

T(n)=23n​T(0)+7⋅(23n​−1)

that's the solution by substitution!

 

AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
steps

Unlock instant AI solutions

Tap the button
to generate a solution

Knowledge Booster
Intelligent Machines
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education