backfill surface and develops hydrostatic pressure behind the retaining wall, while the unit weight of the backfill equals its saturated unit weight ysat = 19.0 kN/m³. Herein, the unit weight of the retaining wall is ye = 24.0 kN/m³, the unit weight of water is yw = 9.8 kN/m³, and the friction angle of the backfill is = 35°. According to Rankine's active earth pressure, answer the following questions. Note that the uplift force under the base of the retaining wall above the original ground can be neglected. Table 4.2 Bearing Capacity Factors B= T if T≤BI√2, B' = B/√2 if T>B/√2, B" =√2B' $' No N₁ Ny $' N N₁ Ny 0 5.14 1.00 0.00 16 11.63 4.34 3.06 B" 1 5.38 1.09 0.07 17 12.34 4.77 3.53 CN 1+0.23 2 5.63 1.20 0.15 18 13.10 5.26 4.07 L FS= 3 5.90 1.31 0.24 19 13.93 5.80 4.68 4 6.19 1.43 0.34 20 14.83 6.40 5.39 2+ H H 5 6.49 1.57 0.45 21 15.82 7.07 6.20 6 6.81 1.72 0.57 22 16.88 7.82 7.13 1 m 1 m Surcharge q = 10 kN/m² 7 7.16 1.88 0.71 23 18.05 8.66 8.20 1 Yav= +₂H₂++H] 8 7.53 2.06 0.86 24 19.32 9.60 9.44 Cav= = — — [c₁₁ + c₁₂H₂+---+ CH] H 9 7.92 2.25 1.03 25 20.72 10.66 10.88 ☑ 10 8.35 2.47 1.22 26 22.25 11.85 12.54 (A)(s²) M. (C₁+C₂)(s²) M = max max Groundwater table rose to 11 8.80 2.71 1.44 27 23.94 13.20 14.47 8 8 12 9.28 2.97 1.69 28 25.80 14.72 16.72 the backfill surface 13 9.81 3.26 1.97 29 27.86 16.44 19.34 Yw 9.8 kN/m³ 14 10.37 3.59 2.29 30 30.14 18.40 22.40 15 10.98 3.94 2.65 31 32.67 20.63 25.99 (continued) K. 1-sino K≈0.95-sin &' K Rankine's active earth pressure 4 m Retaining wall: Cohesionless backfill Ya 15.5 kN/m³ Ye=24 kN/m³ Ysat 19.0 kN/m³ =35° Clogged drain holes Table 4.2 Bearing Capacity Factors (Continued) o(overconsoldate) K o(normally consolidated) √OCR Coulomb's active earth pressure Pa(max) Active force $' No Na Ny $' No N₁ Ny 32 35.49 23.18 30.22 42 93.71 85.38 155.55 C G 33 38.64 26.09 35.19 43 105.11 99.02 186.54 Wall movement away from soil Collector pipe 34 42.16 29.44 41.06 44 118.37 115.31 224.64 P. B-8 35 46.12 33.30 48.03 45 133.88 134.88 271.76 σ' Original ground Groundwater table dropped 36 50.59 37.75 56.31 46 152.10 158.51 330.35 H 2 m far below the base of the wall 37 55.63 42.92 66.19 47 173.64 187.21 403.67 c'=0 w R ✓ 38 61.35 48.93 78.03 48 199.26 222.31 496.01 39 67.87 55.96 92.25 49 Figure 2 40 75.31 64.20 109.41 50 50 229.93 265.51 613.16 H/3 (b) 266.89 319.07 762.89 Pa 41 83.86 73.90 130.22 (a) (2.1) Calculate the resisting moment per unit length of the wall around point O, considering its top width of 1 m and base width of 2 m. (5%) (2.2) Calculate the total resultant force per unit length of the wall and the corresponding overturning moment per unit length of the wall about point O during the dry season. (2.3) Calculate the total resultant force per unit length of the wall and the corresponding overturning moment per unit length of the wall about point O during the rainy season. (2.4) Determine the safety factors against overturning for dry and rainy seasons. (2.5) Discuss the importance of drainage systems in retaining walls from the viewpoint of their stability. Equations and Tables: Bearing capacity equation: q=c'NFFF+q'NFFF+0.5BN FFF Shape factors by De Beer Depth factors by Hansen (1970) (1970) F₁ = 1+ (B) N LN Inclination factors by Meyerhof (1963) and Hanna and Meyerhof (1981) F = F = (1-B Fd=1+0.4(- D B F=1+()tan o' L Fad=1+2 tan o'(1-sin ')2. F₁ =1 D В F= (1-5 B 90° 0.25 H 0.25 H * 0.5 H HAD 0.75 H 4c 二[10] (a) σ =0.657HK (b) the larger of σ =yH|1- YH 0.25 H and σ =0.37H (c) σ = 0.2yH to 0.4yH F1-0.4( K = cosa cosa-cos² a-cos² cosa + √cos o a-cos² Q' K = sin² (B+) sin ẞsin(-8) 1+. sin(+6) sin('-a) sin(B-) sin(a + B)

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

I need detailed help solving this exercise from homework of Foundation Engineering.
I do not really understand, please do it step by step, not that long but clear. Thank you!

backfill surface and develops hydrostatic pressure behind the retaining wall, while the unit weight of the backfill equals
its saturated unit weight ysat = 19.0 kN/m³. Herein, the unit weight of the retaining wall is ye = 24.0 kN/m³, the unit
weight of water is yw = 9.8 kN/m³, and the friction angle of the backfill is = 35°. According to Rankine's active earth
pressure, answer the following questions. Note that the uplift force under the base of the retaining wall above the original
ground can be neglected.
Table 4.2 Bearing Capacity Factors
B= T if T≤BI√2, B' = B/√2 if T>B/√2, B" =√2B'
$'
No
N₁
Ny
$'
N
N₁
Ny
0
5.14
1.00
0.00
16
11.63
4.34
3.06
B"
1
5.38
1.09
0.07
17
12.34
4.77
3.53
CN 1+0.23
2
5.63
1.20
0.15
18
13.10
5.26
4.07
L
FS=
3
5.90
1.31
0.24
19
13.93
5.80
4.68
4
6.19
1.43
0.34
20
14.83
6.40
5.39
2+
H
H
5
6.49
1.57
0.45
21
15.82
7.07
6.20
6
6.81
1.72
0.57
22
16.88
7.82
7.13
1 m
1 m
Surcharge q = 10 kN/m²
7
7.16
1.88
0.71
23
18.05
8.66
8.20
1
Yav=
+₂H₂++H]
8
7.53
2.06
0.86
24
19.32
9.60
9.44
Cav=
= — — [c₁₁ + c₁₂H₂+---+ CH]
H
9
7.92
2.25
1.03
25
20.72
10.66
10.88
☑
10
8.35
2.47
1.22
26
22.25
11.85
12.54
(A)(s²)
M.
(C₁+C₂)(s²)
M =
max
max
Groundwater table rose to
11
8.80
2.71
1.44
27
23.94
13.20
14.47
8
8
12
9.28
2.97
1.69
28
25.80
14.72
16.72
the backfill surface
13
9.81
3.26
1.97
29
27.86
16.44
19.34
Yw 9.8 kN/m³
14
10.37
3.59
2.29
30
30.14
18.40
22.40
15
10.98
3.94
2.65
31
32.67
20.63
25.99
(continued)
K. 1-sino K≈0.95-sin &' K
Rankine's active earth pressure
4 m
Retaining
wall:
Cohesionless backfill
Ya 15.5 kN/m³
Ye=24 kN/m³
Ysat
19.0 kN/m³
=35°
Clogged
drain holes
Table 4.2 Bearing Capacity Factors (Continued)
o(overconsoldate)
K
o(normally consolidated)
√OCR
Coulomb's active earth pressure
Pa(max)
Active
force
$'
No
Na
Ny
$'
No
N₁
Ny
32
35.49
23.18
30.22
42
93.71
85.38
155.55
C
G
33
38.64
26.09
35.19
43
105.11
99.02
186.54
Wall movement
away from
soil
Collector pipe
34
42.16
29.44
41.06
44
118.37
115.31
224.64
P.
B-8
35
46.12
33.30
48.03
45
133.88
134.88
271.76
σ'
Original ground
Groundwater table dropped
36
50.59
37.75
56.31
46
152.10
158.51
330.35
H
2 m
far below the base of the
wall
37
55.63
42.92
66.19
47
173.64
187.21
403.67
c'=0
w
R
✓
38
61.35
48.93
78.03
48
199.26
222.31
496.01
39
67.87
55.96
92.25
49
Figure 2
40
75.31
64.20
109.41
50
50
229.93
265.51
613.16
H/3
(b)
266.89
319.07
762.89
Pa
41
83.86
73.90
130.22
(a)
(2.1) Calculate the resisting moment per unit length of the wall around point O, considering its top width of 1 m and
base width of 2 m. (5%)
(2.2) Calculate the total resultant force per unit length of the wall and the corresponding overturning moment per unit
length of the wall about point O during the dry season.
(2.3) Calculate the total resultant force per unit length of the wall and the corresponding overturning moment per unit
length of the wall about point O during the rainy season.
(2.4) Determine the safety factors against overturning for dry and rainy seasons.
(2.5) Discuss the importance of drainage systems in retaining walls from the viewpoint of their stability.
Equations and Tables:
Bearing capacity equation: q=c'NFFF+q'NFFF+0.5BN FFF
Shape factors by De Beer Depth factors by Hansen (1970)
(1970)
F₁ = 1+ (B)
N
LN
Inclination factors by Meyerhof (1963)
and Hanna and Meyerhof (1981)
F = F = (1-B
Fd=1+0.4(-
D
B
F=1+()tan o'
L
Fad=1+2 tan o'(1-sin ')2.
F₁ =1
D
В
F= (1-5
B
90°
0.25 H
0.25 H
*
0.5 H
HAD
0.75 H
4c
二[10]
(a) σ =0.657HK (b) the larger of σ =yH|1-
YH
0.25 H
and σ =0.37H (c) σ = 0.2yH to 0.4yH
F1-0.4(
K
= cosa
cosa-cos² a-cos²
cosa + √cos o
a-cos²
Q'
K =
sin² (B+)
sin ẞsin(-8) 1+.
sin(+6) sin('-a)
sin(B-) sin(a + B)
Transcribed Image Text:backfill surface and develops hydrostatic pressure behind the retaining wall, while the unit weight of the backfill equals its saturated unit weight ysat = 19.0 kN/m³. Herein, the unit weight of the retaining wall is ye = 24.0 kN/m³, the unit weight of water is yw = 9.8 kN/m³, and the friction angle of the backfill is = 35°. According to Rankine's active earth pressure, answer the following questions. Note that the uplift force under the base of the retaining wall above the original ground can be neglected. Table 4.2 Bearing Capacity Factors B= T if T≤BI√2, B' = B/√2 if T>B/√2, B" =√2B' $' No N₁ Ny $' N N₁ Ny 0 5.14 1.00 0.00 16 11.63 4.34 3.06 B" 1 5.38 1.09 0.07 17 12.34 4.77 3.53 CN 1+0.23 2 5.63 1.20 0.15 18 13.10 5.26 4.07 L FS= 3 5.90 1.31 0.24 19 13.93 5.80 4.68 4 6.19 1.43 0.34 20 14.83 6.40 5.39 2+ H H 5 6.49 1.57 0.45 21 15.82 7.07 6.20 6 6.81 1.72 0.57 22 16.88 7.82 7.13 1 m 1 m Surcharge q = 10 kN/m² 7 7.16 1.88 0.71 23 18.05 8.66 8.20 1 Yav= +₂H₂++H] 8 7.53 2.06 0.86 24 19.32 9.60 9.44 Cav= = — — [c₁₁ + c₁₂H₂+---+ CH] H 9 7.92 2.25 1.03 25 20.72 10.66 10.88 ☑ 10 8.35 2.47 1.22 26 22.25 11.85 12.54 (A)(s²) M. (C₁+C₂)(s²) M = max max Groundwater table rose to 11 8.80 2.71 1.44 27 23.94 13.20 14.47 8 8 12 9.28 2.97 1.69 28 25.80 14.72 16.72 the backfill surface 13 9.81 3.26 1.97 29 27.86 16.44 19.34 Yw 9.8 kN/m³ 14 10.37 3.59 2.29 30 30.14 18.40 22.40 15 10.98 3.94 2.65 31 32.67 20.63 25.99 (continued) K. 1-sino K≈0.95-sin &' K Rankine's active earth pressure 4 m Retaining wall: Cohesionless backfill Ya 15.5 kN/m³ Ye=24 kN/m³ Ysat 19.0 kN/m³ =35° Clogged drain holes Table 4.2 Bearing Capacity Factors (Continued) o(overconsoldate) K o(normally consolidated) √OCR Coulomb's active earth pressure Pa(max) Active force $' No Na Ny $' No N₁ Ny 32 35.49 23.18 30.22 42 93.71 85.38 155.55 C G 33 38.64 26.09 35.19 43 105.11 99.02 186.54 Wall movement away from soil Collector pipe 34 42.16 29.44 41.06 44 118.37 115.31 224.64 P. B-8 35 46.12 33.30 48.03 45 133.88 134.88 271.76 σ' Original ground Groundwater table dropped 36 50.59 37.75 56.31 46 152.10 158.51 330.35 H 2 m far below the base of the wall 37 55.63 42.92 66.19 47 173.64 187.21 403.67 c'=0 w R ✓ 38 61.35 48.93 78.03 48 199.26 222.31 496.01 39 67.87 55.96 92.25 49 Figure 2 40 75.31 64.20 109.41 50 50 229.93 265.51 613.16 H/3 (b) 266.89 319.07 762.89 Pa 41 83.86 73.90 130.22 (a) (2.1) Calculate the resisting moment per unit length of the wall around point O, considering its top width of 1 m and base width of 2 m. (5%) (2.2) Calculate the total resultant force per unit length of the wall and the corresponding overturning moment per unit length of the wall about point O during the dry season. (2.3) Calculate the total resultant force per unit length of the wall and the corresponding overturning moment per unit length of the wall about point O during the rainy season. (2.4) Determine the safety factors against overturning for dry and rainy seasons. (2.5) Discuss the importance of drainage systems in retaining walls from the viewpoint of their stability. Equations and Tables: Bearing capacity equation: q=c'NFFF+q'NFFF+0.5BN FFF Shape factors by De Beer Depth factors by Hansen (1970) (1970) F₁ = 1+ (B) N LN Inclination factors by Meyerhof (1963) and Hanna and Meyerhof (1981) F = F = (1-B Fd=1+0.4(- D B F=1+()tan o' L Fad=1+2 tan o'(1-sin ')2. F₁ =1 D В F= (1-5 B 90° 0.25 H 0.25 H * 0.5 H HAD 0.75 H 4c 二[10] (a) σ =0.657HK (b) the larger of σ =yH|1- YH 0.25 H and σ =0.37H (c) σ = 0.2yH to 0.4yH F1-0.4( K = cosa cosa-cos² a-cos² cosa + √cos o a-cos² Q' K = sin² (B+) sin ẞsin(-8) 1+. sin(+6) sin('-a) sin(B-) sin(a + B)
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning