Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 16.3P
The soil profile at a site is shown Figure P16.3. Find the total horizontal normal stresses at A and B, assuming at-rest conditions.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Calculate the effective stress at point A for the following soil profile:
3
1.
(a) An element of soil is subjected to the two-dimensional stresses shown in Figure Q1.
0, = 150
=-30
= 30
60°
o, = 75
(All in kPa)
Figure Q1
(1) Determine the normal and shear stresses on the P and Q planes which are orthogonal
(ii) Determine the magnitudes and directions of the major and minor principal stresse
(b) An undrained direct shear test with a hanger mass of 32 kg was performed on a sample
of saturated clay. The plan dimensions of the shear box were 60 x 60 mm. The undrained
shear strength of the clay is known to be Cu = 60 kPa. The critical state friction angle of
the clay is known to be d'ern = 22°. What pore water pressure (u) in kPa, would the
sample experience at the ultimate state?
(c) Given that the pore pressure calculated from part (b) was negative, explain what this
implies about the volume change that would have occurred to the sample (dilative or
contractive) if the test was done under drained conditions.
1. The following figure shows the stress-displacement results of four direct shear tests
under different vertical stresses.
70
60
o'v=10 psi
50
- o'v=20 psi
40
Δσ'ν-40 psi
o'v=80 psi
30
20
10
0.05
0.1
0.15
0.2
0.25
0.3
shear displ. [in]
Based on the results above, develop the Mohr-Coulomb failure envelope. Indicate the
cohesion (c') and calculate the drained friction angle (o').
shear stress [psi]
Chapter 16 Solutions
Principles of Foundation Engineering (MindTap Course List)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- refer to the figure due to application of line load q1 and q2 . the vertical stress increase at point a is 42 kn/m2 determine the magnitude of qarrow_forwardN B 0 Horizontal The stresses shown in the figure are applied at a point in a dry clayey sand soil mass. A= 50 kPa and B= 125 kPa The shear strength parameters of the clayey sand are: c'= 9kPa and p'=29° 0=30° a) The value of the shear stress, T, is slowly increased. What value would cause shear failure at this point (in kPa)? b) At failure, what angle does the failure plane make with the horizontal (in degrees)?arrow_forwardThe soil profile shown consists of dry sand (4-m thick) which overlies a layer of clay (3-m thick). Ground water table is located at the interface of the sand and clay. a. If the water table rises to the top of the ground surface, what is the change in the effective stress (in kPa) at the bottom of the clay layer? Round off to two decimal places. (ANSWER: 26.336) b. Compute the effective stress at the bottom of the clay layer in kPa. Round off to three decimal places (ANSWER: 97.686) c. How many meters must the ground water table rise to decrease the effective stress by 14 kPa, at the bottom of the clay layer? Round off to two decimal places (ANSWER: 2.13)arrow_forward
- Refer to Figure 10.48. If R = 4 m and hw = height of water = 5 m, determine the vertical stress increases 2 m below the loaded area at radial distances where r = 0, 2, 4, 6, and 8 m. Circular contact area of radius R on the ground surface Figure 10.48arrow_forwardA point load of 1000 kN is applied at the ground level. Plot the variation of the vertical stress increase z with depth at horizontal distances of 1 m, 2 m, and 4 m from the load.arrow_forwardRepeat Problem 10.12 for q = 700 kN/m2, B = 8 m, and z = 4 m. In this case, point A is located below the centerline under the strip load. 10.12 Refer to Figure 10.43. A strip load of q = 1450 lb/ft2 is applied over a width with B = 48 ft. Determine the increase in vertical stress at point A located z = 21 ft below the surface. Given x = 28.8 ft. Figure 10.43arrow_forward
- Refer to Figure 10.42. Due to application of line loads q1 and q2, the vertical stress increase at point A is 58 kN/m2. Determine the magnitude of q2. Figure 10.42arrow_forwardA 10 ft diameter flexible loaded area is subjected to a uniform pressure of 1200 lb/ft2. Plot the variation of the vertical stress increase beneath the center with depth z = 0 to 20 ft. In the same plot, show the variation beneath the edge of the loaded area.arrow_forwardRefer to Figure 8.27. The flexible area is uniformly loaded. Given: q = 300 kN/m2. Determine the vertical stress increase at point A located at depth 3 m below point A (shown in the plan). FIG. 8.27arrow_forward
- A point load of 1000 kN is applied at the ground level. Plot the variation of the vertical stress increase Δσ with depth at horizontal distance of 1 m, 2 m, and 4 m from the load.arrow_forwardRefer to Figure 8.24. Determine the vertical stress increase, , at point A with the following values: q1 = 100 kN/m x1 = 3 m z = 2 m q2 = 200 kN/m x2 = 2 m FIG. 8.24 Stress at a point due to two line loadsarrow_forwardUse Eq. (6.14) to determine the stress increase () at z = 10 ft below the center of the area described in Problem 6.5. 6.5 Refer to Figure 6.6, which shows a flexible rectangular area. Given: B1 = 4 ft, B2 = 6 ft, L1, = 8 ft, and L2 = 10 ft. If the area is subjected to a uniform load of 3000 lb/ft2, determine the stress increase at a depth of 10 ft located immediately below point O. Figure 6.6 Stress below any point of a loaded flexible rectangular areaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Stress Distribution in Soils GATE 2019 Civil | Boussinesq, Westergaard Theory; Author: Gradeup- GATE, ESE, PSUs Exam Preparation;https://www.youtube.com/watch?v=6e7yIx2VxI0;License: Standard YouTube License, CC-BY