Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 16.17P
To determine
Calculate the magnitude and location of the active thrust on the wall.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. Refer to Figure below For H = 6 m, y = 17.0 kN/m³,
o' = 36°, c' = 0, ß = 85°, a = 10°, and 8' = 24°, assume
that the backfill is in the active state and use Coulomb’s
equation to determine the magnitude, location, and direction
Pa
of the active thrust on the wall.
H
2. what would be the active thrust Pa
there is a surcharge of 25 kN/m² at the ground level?
when
Question 3:
A 4.5 m high wall with groundwater 1.5 m below from
the top behind the wall has sandy backfill as shown.
The bridge structure in front of the wall (which is not
shown on the figure) prevents wall from movements.
Calculate:
a) the lateral force behind the wall exerted on the wall.
b) the distance from the base of the wall to the center
of this force.
Bridge.
4.5 m
1.5 m
y = 17 kN/m³
Ysat = 19 kN/m3
Sand
c'= 0
$' = 37°
13.2 Assume that the retaining wall shown in Figure 13.9 is frictionless.
Determine the Rankine active force per unit length of the wall, the variation of
active earth pressure with depth, and the location of the resultant.
If H = 4m, Ø = 36° and y = 18 kN/m3
kN
Ans. P, = 37.44", z = 1.33m
m
13.3 Assume that the retaining wall shown in Figure 13.9 is frictionless.
Determine the Rankine passive force per unit length of the wall, the variation of
lateral earth pressure with depth, and the location of the resultant.
If H = 5m, Ø = 35° and y = 14 kN/m?
Ans. Pp
645.8 kN
z = 1.67m
m.
Sand
Unit weight = y (or density = p)
%3D
H
c' = 0
8' (angle of wall friction) = 0
Figure 13.9
Chapter 16 Solutions
Principles of Foundation Engineering (MindTap Course List)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- The retaining wall shown above is subjected to an active earth pressure distribution as illustrsted in the figure. What is the eccentricity of the resultant load acting on this wall (measured from the centre of the wall)? XX w=240 kN/m 5m length W 2m 35 kPa O 0.31 m O 0.61 m O 0.23 m O 0.41 marrow_forwardDetermine the active lateral earth pressure on the frictionless wall shown in the figure below. Sketch the lateral earth pressure distributions and calculate the resultant force and its location from the base of the wall. Also, determine the moments of passive and active forces. Neglect seepage effects. Use Rankine's earth pressure method. (w = 10 kN/m) 3.0m Ysat 20 kN/m³ y = 19 kN/m²³ ' = 30° Ysat = 20 kN/m³ y = 18 kN/m³ o = 28 6.0marrow_forwardPlease only solve 12.15 PLEASE EXPLAIN TO ME HOW TO FIND THE LOCATION OF THE RESULTANT, I don't know how to take the moment about the buttom for each area, please explain, thank youarrow_forward
- Please answer 13.13arrow_forwardPlease answer 13.9arrow_forwardCalculate the active and passive earth pressures AND. determine the distance at which the net active and passive force will acting on the retaining wall Ya=19 kN /m3 - 34 c=3kp 2m 6=34 %3D Vd = 17.54kN/m3 8=32"; ċ=o %3D 1.5m %3D = 21. BkN/m3 V sat 8= 31; c'= o %3D 1.5m %3D Ysat = 22.lkN/m3 5 m 8=30;cioarrow_forward
- Problem: The cantilever retaining wall shown in the figure resists active lateral earth pressure throughout its length. 1. Calculate the total lateral force on the wall due to active pressure in KN2. Determine the overturning moment due to lateral earth pressure in KN-m.3. Determine the resisting overturning moment in KN-marrow_forwardExplanation it correctlyarrow_forwardFor the frictionless wall shown in Figure No 1, Calculate the following: (a) The active lateral earth pressure distribution with depth. (b) The passive lateral earth pressure distribution with depth(c) The magnitudes and locations of the active and passive forces. (d) The resultant force and its location. (e) The ratio of passive moment to active moment. Note: UDL should be considered as mentioned in the figurearrow_forward
- (Solve the following exercise, showing and explaining step by step to its resolution). A retaining wall with vertical walls 8.00 m high supports the thrust of a sand with a volumetric weight in its natural stratum of 1800 kg/m3 and an angle of internal friction of 35°. The ground surface is horizontal. Determine the thrust on the wall per metre of depth and mark the forces acting on the wall; neglect the passive thrust.arrow_forwardUse Eq. (12.3), Figure P12.2, and the following values to determine the at-rest lateral earth force per unit length of the wall. Also find the location of the resultant. H = 5 m, H1 = 2 m, H2 = 3 m, γ = 15.5 kN/m3, γsat = 18.5 kN/m3, Φ' = 34º, c' = 0, q = 20 kN/m2, and OCR = 1.arrow_forwardWhere, X=36 A retaining wall (frictionless) is shown in a) Plot the variation of active and passive lateral pressures with depth for soil profile shown in Fig.1 b) Determine the force due to surcharge in active side c) Compute Total active force on the wall if the wall is 9m long d) Evaluate the lateral stability of the wall by comparing the forces acting on the wallarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning