b) A fault occurs at bus 4 of the network shown in Figure Q3. Pre-fault nodal voltages throughout the network are of 1 p.u. and the impedance of the electric arc is neglected. Sequence impedance parameters of the generator, transmission lines, and transformer are given in Figure Q3, where X and Y are the last two digits of your student number. V₁ = 120° p.u. V₂ = 120° p.u. jX(1) j0.1Y p.u. jX2)= j0.1Y p.u. jXko) j0.1X p.u. - 0 jX(1) = j0.2 p.u. 1JX(2) = 0.2 p.u. 2 jX1(0) = j0.25 p.u. jX2(1) j0.2Y p.u. V₁=1/0° p.u. jX(2(2) = j0.2Y p.u. jX2(0) = j0.3X p.u. = V₂ = 120° p.u. jXT(1) j0.1X p.u. jXT(2) j0.1X p.u. JX3(1) j0.1Y p.u. JX3(2)=j0.1Y p.u. jXT(0) j0.1X p.u. JX3(0)=j0.15 p.u. 0- = 3 = Figure Q3. Circuit for problem 3b). For example, if your student number is c1700123, then: jXa(r) = j0.13 p.u.. jXa(z) = j0.13 p. u., and jXa(o) = j0.12 p. u. 4 (i) Assuming a balanced excitation, draw the positive, negative and zero sequence Thévenin equivalent circuits as seen from bus 4. (ii) Determine the positive sequence fault current for the case when a three- phase-to-ground fault occurs at bus 4 of the network. (iii) Determine the short-circuit fault current for the case when a one-phase- to-ground fault occurs at bus 4. X = 1 y=7
b) A fault occurs at bus 4 of the network shown in Figure Q3. Pre-fault nodal voltages throughout the network are of 1 p.u. and the impedance of the electric arc is neglected. Sequence impedance parameters of the generator, transmission lines, and transformer are given in Figure Q3, where X and Y are the last two digits of your student number. V₁ = 120° p.u. V₂ = 120° p.u. jX(1) j0.1Y p.u. jX2)= j0.1Y p.u. jXko) j0.1X p.u. - 0 jX(1) = j0.2 p.u. 1JX(2) = 0.2 p.u. 2 jX1(0) = j0.25 p.u. jX2(1) j0.2Y p.u. V₁=1/0° p.u. jX(2(2) = j0.2Y p.u. jX2(0) = j0.3X p.u. = V₂ = 120° p.u. jXT(1) j0.1X p.u. jXT(2) j0.1X p.u. JX3(1) j0.1Y p.u. JX3(2)=j0.1Y p.u. jXT(0) j0.1X p.u. JX3(0)=j0.15 p.u. 0- = 3 = Figure Q3. Circuit for problem 3b). For example, if your student number is c1700123, then: jXa(r) = j0.13 p.u.. jXa(z) = j0.13 p. u., and jXa(o) = j0.12 p. u. 4 (i) Assuming a balanced excitation, draw the positive, negative and zero sequence Thévenin equivalent circuits as seen from bus 4. (ii) Determine the positive sequence fault current for the case when a three- phase-to-ground fault occurs at bus 4 of the network. (iii) Determine the short-circuit fault current for the case when a one-phase- to-ground fault occurs at bus 4. X = 1 y=7
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Concept explainers
Three-Phase Transformers
Three-segment transformers are a type of transformer used to transform voltages of electrical systems into three ranges. Two type transformers are shell-type transformer and core type transformer. In brief, it could be described because of the exquisite kinds of configurations.
Transformer
Ever since electricity has been created, people have started using it in its entirety. We see many types of Transformers in the neighborhoods. Some are smaller in size and some are very large. They are used according to their requirements. Many of us have seen the electrical transformer but they do not know what work they are engaged in.
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step 1: Stating the given data
VIEWStep 2: positive sequence equivalent circuit
VIEWStep 3: Negative sequence equivalent circuit
VIEWStep 4: Zero sequence equivalent circuit
VIEWStep 5: ii) Positive sequence fault current for three phase tp ground fault
VIEWStep 6: (iii) short circuit current for LG fault
VIEWSolution
VIEWStep by step
Solved in 7 steps with 15 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,