A fault occurs at bus 4 of the network shown in Figure Q3. Pre-fault nodal voltages throughout the network are of 1 p.u. and the impedance of the electric arc is neglected. Sequence impedance parameters of the generator, transmission lines, and transformer are given in Figure Q3, where X and Y are the last two digits of your student number. 10.av

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
b) A fault occurs at bus 4 of the network shown in Figure Q3. Pre-fault nodal
voltages throughout the network are of 1 p.u. and the impedance of the electric
arc is neglected. Sequence impedance parameters of the generator,
transmission lines, and transformer are given in Figure Q3, where X and Y are
the last two digits of your student number.
jX(1) j0.1Y p.u.
jX2)= j0.1Y p.u.
jXko) = j0.1X p.u.
V₁ = 120° p.u. V₂ = 120° p.u.
(i)
(ii)
0
jX(1) = j0.2 p.u.
1 jx(2) j0.2 p.u. 2
jX1(0) = j0.25 p.u.
jXT(1)
jXT(2)
종 3
j0.1X p.u. JX3(1)
j0.1Y p.u.
j0.1X p.u. JX3(2)
j0.1Y p.u.
jXT(0) j0.1X p.u. JX3(0)=j0.15 p.u.
0
=
x = 1,
jX2(1) j0.2Y p.u. V₁=1/0° p.u.
jX(2(2) = j0.2Y p.u.
jX2(0) = j0.3X p.u.
=
V3 = 120° p.u.
Figure Q3. Circuit for problem 3b).
For example, if your student number is c1700123, then:
y = 7
=
=
jXa(r) = j0.13 p.u., jXa(z) = j0.13 p. u., and jXa(o) = j0.12 p. u.
Assuming a balanced excitation, draw the positive, negative and zero
sequence Thévenin equivalent circuits as seen from bus 4.
4
Determine the positive sequence fault current for the case when a three-
phase-to-ground fault occurs at bus 4 of the network.
Transcribed Image Text:b) A fault occurs at bus 4 of the network shown in Figure Q3. Pre-fault nodal voltages throughout the network are of 1 p.u. and the impedance of the electric arc is neglected. Sequence impedance parameters of the generator, transmission lines, and transformer are given in Figure Q3, where X and Y are the last two digits of your student number. jX(1) j0.1Y p.u. jX2)= j0.1Y p.u. jXko) = j0.1X p.u. V₁ = 120° p.u. V₂ = 120° p.u. (i) (ii) 0 jX(1) = j0.2 p.u. 1 jx(2) j0.2 p.u. 2 jX1(0) = j0.25 p.u. jXT(1) jXT(2) 종 3 j0.1X p.u. JX3(1) j0.1Y p.u. j0.1X p.u. JX3(2) j0.1Y p.u. jXT(0) j0.1X p.u. JX3(0)=j0.15 p.u. 0 = x = 1, jX2(1) j0.2Y p.u. V₁=1/0° p.u. jX(2(2) = j0.2Y p.u. jX2(0) = j0.3X p.u. = V3 = 120° p.u. Figure Q3. Circuit for problem 3b). For example, if your student number is c1700123, then: y = 7 = = jXa(r) = j0.13 p.u., jXa(z) = j0.13 p. u., and jXa(o) = j0.12 p. u. Assuming a balanced excitation, draw the positive, negative and zero sequence Thévenin equivalent circuits as seen from bus 4. 4 Determine the positive sequence fault current for the case when a three- phase-to-ground fault occurs at bus 4 of the network.
Expert Solution
steps

Step by step

Solved in 6 steps with 12 images

Blurred answer
Knowledge Booster
Three Phase Transformer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,