b) A fault occurs at bus 3 of the network shown in Figure Q3. Pre-fault nodal voltages throughout the network are of 1 p.u. and the impedance of the electric arc is neglected. Sequence impedance parameters of the generator, transmission lines, and transformer are given in Figure Q3, where X and Y are the last two digits of your student number. jx2(1) = j0.1X p.u. jx2(2) = j0.1X p.u. jX2(0)=j0.2Y p.u. = V₁ 120° p.u. V₂ = 120° p.u. V₁ = 120° p.u. jx)=j0.1X p.u. jX2)= j0.1X p.u. jxo)=j0.1Y p.u. jx(1) = j0.25 p.u. 2 X (2) = 0.25 p.u. 3 jx1(0)=j0.3 p.u. jXT(I)=j0.1Y p.u. jX3(1)=j0.1X p.u. = jXT(2) j0.1Y p.u. jx13(2)=j0.1X p.u. jXT(0) = j0.1Y p.u. jX3(0) = j0.05 p.u. 0 0- Figure Q3. Circuit for problem 3b). (i) Assuming a balanced excitation, draw the positive, negative and zero sequence Thévenin equivalent circuits as seen from bus 3. (ii) Determine the positive sequence fault current for the case when a three- phase-to-ground fault occurs at bus 3 of the network. (iii) Determine the short-circuit fault current for the case when a one-phase- to-ground fault occurs at bus 3.
b) A fault occurs at bus 3 of the network shown in Figure Q3. Pre-fault nodal voltages throughout the network are of 1 p.u. and the impedance of the electric arc is neglected. Sequence impedance parameters of the generator, transmission lines, and transformer are given in Figure Q3, where X and Y are the last two digits of your student number. jx2(1) = j0.1X p.u. jx2(2) = j0.1X p.u. jX2(0)=j0.2Y p.u. = V₁ 120° p.u. V₂ = 120° p.u. V₁ = 120° p.u. jx)=j0.1X p.u. jX2)= j0.1X p.u. jxo)=j0.1Y p.u. jx(1) = j0.25 p.u. 2 X (2) = 0.25 p.u. 3 jx1(0)=j0.3 p.u. jXT(I)=j0.1Y p.u. jX3(1)=j0.1X p.u. = jXT(2) j0.1Y p.u. jx13(2)=j0.1X p.u. jXT(0) = j0.1Y p.u. jX3(0) = j0.05 p.u. 0 0- Figure Q3. Circuit for problem 3b). (i) Assuming a balanced excitation, draw the positive, negative and zero sequence Thévenin equivalent circuits as seen from bus 3. (ii) Determine the positive sequence fault current for the case when a three- phase-to-ground fault occurs at bus 3 of the network. (iii) Determine the short-circuit fault current for the case when a one-phase- to-ground fault occurs at bus 3.
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
ignore X and Y values
![b) A fault occurs at bus 3 of the network shown in Figure Q3. Pre-fault nodal
voltages throughout the network are of 1 p.u. and the impedance of the
electric arc is neglected. Sequence impedance parameters of the generator,
transmission lines, and transformer are given in Figure Q3, where X and Y are
the last two digits of your student number.
jx2(1) = j0.1X p.u.
jx2(2) = j0.1X p.u.
jX2(0)=j0.2Y p.u.
=
V₁ 120° p.u. V₂ = 120° p.u.
V₁ = 120° p.u.
jx)=j0.1X p.u.
jX2)= j0.1X p.u.
jxo)=j0.1Y p.u.
jx(1) = j0.25 p.u.
2 X (2) = 0.25 p.u. 3
jx1(0)=j0.3 p.u.
jXT(I)=j0.1Y p.u.
jX3(1)=j0.1X p.u.
=
jXT(2) j0.1Y p.u.
jx13(2)=j0.1X p.u.
jXT(0) = j0.1Y p.u.
jX3(0) = j0.05 p.u.
0
0-
Figure Q3. Circuit for problem 3b).
(i) Assuming a balanced excitation, draw the positive, negative and zero
sequence Thévenin equivalent circuits as seen from bus 3.
(ii) Determine the positive sequence fault current for the case when a three-
phase-to-ground fault occurs at bus 3 of the network.
(iii) Determine the short-circuit fault current for the case when a one-phase-
to-ground fault occurs at bus 3.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F22fac008-4597-4709-8b3e-4745b70d9001%2F414ce903-1522-4ea5-977e-7a7d1f654945%2Fw637igt_processed.png&w=3840&q=75)
Transcribed Image Text:b) A fault occurs at bus 3 of the network shown in Figure Q3. Pre-fault nodal
voltages throughout the network are of 1 p.u. and the impedance of the
electric arc is neglected. Sequence impedance parameters of the generator,
transmission lines, and transformer are given in Figure Q3, where X and Y are
the last two digits of your student number.
jx2(1) = j0.1X p.u.
jx2(2) = j0.1X p.u.
jX2(0)=j0.2Y p.u.
=
V₁ 120° p.u. V₂ = 120° p.u.
V₁ = 120° p.u.
jx)=j0.1X p.u.
jX2)= j0.1X p.u.
jxo)=j0.1Y p.u.
jx(1) = j0.25 p.u.
2 X (2) = 0.25 p.u. 3
jx1(0)=j0.3 p.u.
jXT(I)=j0.1Y p.u.
jX3(1)=j0.1X p.u.
=
jXT(2) j0.1Y p.u.
jx13(2)=j0.1X p.u.
jXT(0) = j0.1Y p.u.
jX3(0) = j0.05 p.u.
0
0-
Figure Q3. Circuit for problem 3b).
(i) Assuming a balanced excitation, draw the positive, negative and zero
sequence Thévenin equivalent circuits as seen from bus 3.
(ii) Determine the positive sequence fault current for the case when a three-
phase-to-ground fault occurs at bus 3 of the network.
(iii) Determine the short-circuit fault current for the case when a one-phase-
to-ground fault occurs at bus 3.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,