Assignment 2. Example. The diffusivity of the vapour of a volatile liquid in air can be conveniently determined by Winkelmann's method in which liquid is contained in a narrow diameter vertical tube, maintained at a constant temperature, and an air stream is passed over the top of the tube sufficiently rapidly to ensure that the partial pressure of the vapour there remains approximately zero. On the assumption that the vapour is transferred from the surface of the liquid to the air stream by molecular diffusion, calculate the diffusivity of carbon tetrachloride vapour in air at 321 K and atmospheric pressure from the following experimental data: Time from commencement of experiment, (t x1 03 s) Liquid level (mm) 0.0 0.0 1.6 2.5 11.1 12.9 27.4 23-2 80-2 43.9 117.5 54-7 168.6 67.0 199.7 73-8 289-3 90-3 383-1 104.8 The vapour pressure of carbon tetrachloride at 321 K is 37.6 kN/m² and the density of the liquid is 1540 kg/m³. Take the kilogram molecular volume as 22.4 m³.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
Assignment 2.
Example. The diffusivity of the vapour of a volatile liquid in air can be conveniently
determined by Winkelmann's method in which liquid is contained in a narrow diameter
vertical tube, maintained at a constant temperature, and an air stream is passed over
the top of the tube sufficiently rapidly to ensure that the partial pressure of the vapour
there remains approximately zero. On the assumption that the vapour is transferred
from the surface of the liquid to the air stream by molecular diffusion, calculate the
diffusivity of carbon tetrachloride vapour in air at 321 K and atmospheric pressure from
the following experimental data:
Time from commencement
of experiment, (t x1 03 s)
Liquid level (mm)
0.0
0.0
1.6
2.5
11.1
12.9
27.4
23-2
80-2
43.9
117.5
54-7
168.6
67.0
199.7
73-8
289-3
90-3
383-1
104.8
The vapour pressure of carbon tetrachloride at 321 K is 37.6 kN/m² and the density of
the liquid is 1540 kg/m³. Take the kilogram molecular volume as 22.4 m³.
Transcribed Image Text:Assignment 2. Example. The diffusivity of the vapour of a volatile liquid in air can be conveniently determined by Winkelmann's method in which liquid is contained in a narrow diameter vertical tube, maintained at a constant temperature, and an air stream is passed over the top of the tube sufficiently rapidly to ensure that the partial pressure of the vapour there remains approximately zero. On the assumption that the vapour is transferred from the surface of the liquid to the air stream by molecular diffusion, calculate the diffusivity of carbon tetrachloride vapour in air at 321 K and atmospheric pressure from the following experimental data: Time from commencement of experiment, (t x1 03 s) Liquid level (mm) 0.0 0.0 1.6 2.5 11.1 12.9 27.4 23-2 80-2 43.9 117.5 54-7 168.6 67.0 199.7 73-8 289-3 90-3 383-1 104.8 The vapour pressure of carbon tetrachloride at 321 K is 37.6 kN/m² and the density of the liquid is 1540 kg/m³. Take the kilogram molecular volume as 22.4 m³.
Expert Solution
steps

Step by step

Solved in 2 steps with 6 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The