Assign to maxSum the max of (numA, numB) PLUS the max of (numY, numZ). Use just one statement. Hint: Call findMax() twice in an expression. - I dont understand what I am doing wrong here, I keep getting an error code saying that non-static findMax(numA, numB) cannot be referenced from a static context. Anything helps! import java.util.Scanner; public class SumOfMax { public double findMax(double num1, double num2) { double maxVal; // Note: if-else statements need not be understood to // complete this activity if (num1 > num2) { // if num1 is greater than num2, maxVal = num1; // then num1 is the maxVal. } else { // Otherwise, maxVal = num2; // num2 is the maxVal. } return maxVal; } public static void main(String [] args) { double numA = 5.0; double numB = 10.0; double numY = 3.0; double numZ = 7.0; double maxSum = 0.0; // Use object maxFinder to call the method SumOfMax maxFinder = new SumOfMax(); maxSum= (findMax(numA,numB)+findMax(numY,numZ)); System.out.print("maxSum is: " + maxSum); } }
Assign to maxSum the max of (numA, numB) PLUS the max of (numY, numZ). Use just one statement. Hint: Call findMax() twice in an expression.
- I dont understand what I am doing wrong here, I keep getting an error code saying that non-static findMax(numA, numB) cannot be referenced from a static context. Anything helps!
import java.util.Scanner;
public class SumOfMax {
public double findMax(double num1, double num2) {
double maxVal;
// Note: if-else statements need not be understood to
// complete this activity
if (num1 > num2) { // if num1 is greater than num2,
maxVal = num1; // then num1 is the maxVal.
}
else { // Otherwise,
maxVal = num2; // num2 is the maxVal.
}
return maxVal;
}
public static void main(String [] args) {
double numA = 5.0;
double numB = 10.0;
double numY = 3.0;
double numZ = 7.0;
double maxSum = 0.0;
// Use object maxFinder to call the method
SumOfMax maxFinder = new SumOfMax();
maxSum= (findMax(numA,numB)+findMax(numY,numZ));
System.out.print("maxSum is: " + maxSum);
}
}
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images