A steel component is subjected to alternate cyclical loading. The steel follows Basquin's law for high cycle fatigue, o, x Ng = C, (where the stress amplitude is in MPa). Ignore the geometric detail and assume that Marin's modifying factors are all equal to 1. You are given the minimum stress amin = -213 MPa, the maximum stress a,max = 213 MPa. The material data are Tensile strength oUTS = 539 MPa, Basquin's constant c, = 875 MPa, Basquin's exponent a = 0.085. a) Calculate the stress ratio R, the stress amplitude a, in MPa and the mean stress am in MPa. The answers are acceptable with a tolerance of 0.01 for R and of 1 MPa the stresses. R: MPa Om : MPa b) Calculate the corresponding life, in 10° cycles, (tolerance of 0.1 106 cycles) |N; :

Materials Science And Engineering Properties
1st Edition
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Charles Gilmore
Chapter6: Introduction To Mechanical Properties
Section: Chapter Questions
Problem 5CQ
icon
Related questions
icon
Concept explainers
Question
A steel component is subjected to alternate cyclical loading.
The steel follows Basquin's law for high cycle fatigue, o, x N = C,
(where the stress amplitude is in MPa).
Ignore the geometric detail and assume that Marin's modifying
factors are all equal to 1.
You are given
the minimum stress ain = -213 MPa,
the maximum stress omax = 213 MPa.
The material data are
Tensile strength oUTS = 539 MPa,
Basquin's constant c, = 875 MPa,
Basquin's exponent a = 0.085.
a) Calculate the stress ratio R, the stress amplitude o, in MPa and
the mean stress am in MPa.
The answers are acceptable with a tolerance of 0.01 for R and of
1 MPa the stresses.
R:
MPa
MPа
b) Calculate the corresponding life, in 10° cycles, (tolerance of 0.1
106 cycles)
N :
Transcribed Image Text:A steel component is subjected to alternate cyclical loading. The steel follows Basquin's law for high cycle fatigue, o, x N = C, (where the stress amplitude is in MPa). Ignore the geometric detail and assume that Marin's modifying factors are all equal to 1. You are given the minimum stress ain = -213 MPa, the maximum stress omax = 213 MPa. The material data are Tensile strength oUTS = 539 MPa, Basquin's constant c, = 875 MPa, Basquin's exponent a = 0.085. a) Calculate the stress ratio R, the stress amplitude o, in MPa and the mean stress am in MPa. The answers are acceptable with a tolerance of 0.01 for R and of 1 MPa the stresses. R: MPa MPа b) Calculate the corresponding life, in 10° cycles, (tolerance of 0.1 106 cycles) N :
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Material Properties
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Materials Science And Engineering Properties
Materials Science And Engineering Properties
Civil Engineering
ISBN:
9781111988609
Author:
Charles Gilmore
Publisher:
Cengage Learning
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Steel Design (Activate Learning with these NEW ti…
Steel Design (Activate Learning with these NEW ti…
Civil Engineering
ISBN:
9781337094740
Author:
Segui, William T.
Publisher:
Cengage Learning