A simply supported wood beam AB with span length L = 8 m carries a uniform load of intensity q = 10.8 kN/m and a concentrated load P= 25 kN at a distance a = 2.5 m from RH end (see figure). a. Calculate the maximum bending stress due to the load if the beam has a rectangular cross section with width b = 150 mm and height h=320 mm. You will need to set up Shear and Moment functions to determine MMax. b. Calculate the shear stresses in the beam (at the location of maximum shear force) at points located at the Neutral Axis and 40 mm, 80 mm, 120 mm and 160 mm from the N/A of the beam. From these calculations, plot a graph showing the distribution of shear stresses from top to bottom of the beam. L a H P h

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

please help me with this as much as you can, I really cannot understand it

1. A simply supported wood beam AB with span length L = 8 m carries a uniform load of
intensity q = 10.8 kN/m and a concentrated load P= 25 kN at a distance a = 2.5 m from
RH end (see figure).
a. Calculate the maximum bending stress due to the load if the beam has a rectangular
cross section with width b = 150 mm and height h=320 mm. You will need to set
up Shear and Moment functions to determine MMax.
b. Calculate the shear stresses in the beam (at the location of maximum shear force)
at points located at the Neutral Axis and 40 mm, 80 mm, 120 mm and 160 mm
from the N/A of the beam. From these calculations, plot a graph showing the
distribution of shear stresses from top to bottom of the beam.
P
-
L
2. Using the results from problem 1 above and assuming the allowable stress Allow = 150
MPa, calculate the following:
9
a. The required section modulus S. Then select the most economical wide-flange
beam (W shape) from Table F-1(b) in Appendix F (attached),
b. Recalculate S, taking-into-account the weight (IE deadload) of the beam. Select a
new beam if necessary
L
h
a
H
I
Transcribed Image Text:1. A simply supported wood beam AB with span length L = 8 m carries a uniform load of intensity q = 10.8 kN/m and a concentrated load P= 25 kN at a distance a = 2.5 m from RH end (see figure). a. Calculate the maximum bending stress due to the load if the beam has a rectangular cross section with width b = 150 mm and height h=320 mm. You will need to set up Shear and Moment functions to determine MMax. b. Calculate the shear stresses in the beam (at the location of maximum shear force) at points located at the Neutral Axis and 40 mm, 80 mm, 120 mm and 160 mm from the N/A of the beam. From these calculations, plot a graph showing the distribution of shear stresses from top to bottom of the beam. P - L 2. Using the results from problem 1 above and assuming the allowable stress Allow = 150 MPa, calculate the following: 9 a. The required section modulus S. Then select the most economical wide-flange beam (W shape) from Table F-1(b) in Appendix F (attached), b. Recalculate S, taking-into-account the weight (IE deadload) of the beam. Select a new beam if necessary L h a H I
Table F-1(b)
Properties of Wide-Flange Sections (W Shapes) - SI Units (Abridged List)
Flange
Mass
per
Web
Designation meter Area Depth thickness
kg
mm² mm
W 760 X 314 314
W 760 X 196
196
W 610 X 241 241
W 610 X 140 140
W 460 X 177 177
W 460 x 106 106
W 410 X 149
W 410 X 114
W 410 X 85
W 410 x 46.1
W 360 x 179
W 360 x 122
W 360 x 79
W 360 x 39
W 310 X 129
W 310 x 74
W 310 X 52
W 310 X 21
W 250 x 89
W 250 x 67
W 250 X 44.8
W 250 x 17.9
149
114
85.0
46.1
179
122
129
74.0
52.0
21.0
40,100 785
25,100 770
89.0
67.0
44.8
17.9
30,800 635
17,900 617
22,600 483
13,400 470
19,000 432
14,600 419
10,800
417
5890 404
79.0
39.0 4960
22,800 368
15,500
363
10,100 353
353
16,500 318
9420 310
6650 318
2680 302
11,400 259
8580 257
5700 267
2280 251
W 200 X 52
6650 206
W 200 X 41.7
52.0
41.7
31.3
5320 205
W 200 x 31.3
3970 210
W 200 x 22.5 22.5 2860 206
Note: Axes 1-1 and 2-2 are principal centroidal axes.
mm
19.7
15.6
17.9
13.1
16 17
66
16.6
12.6
14.9
11.6
10.9
6.99
15.0
13.0
9.40
6.48
13.1
10.7
8.89
7.62
4.83
Width Thickness I
mm
384
267
330
230
287
194
307
9.40
205
7.62 167
5.08
101
264
262
181
140
mm
33.5
25.4
7.87 204
7.24
166
6.35 134
6.22 102
31.0
22.2
26.9
20.6
373
23.9
257 21.7
205
16.8
128
10.7
25.0
19.3
18.2
11.2
20.6
16.3
13.2
5.72
257
17.3
204
15.7
148 13.0
101
5.33
12.6
11.8
10.2
Axis 1-1
S
x 105 mm² x 10³ mm³
8.00
4290
2400
2150
1120
912
487
620
462
316
156
574
367
225
102
308
163
119
36.9
142
103
70.8
22.4
52.9
40.8
31.3
20.0
10,900
6230
6780
3640
3790
2080
2870
2200
1510
773
r
mm
328
310
264
251
201
191
180
178
171
163
3110
158
2020
154
1270 150
578
144
1090 112
805 110
531
111
179
Axis 2-2
I
S
× 105 mm² × 10³ mm³ mm
99.1
315
81.6
184
45.4
105
25.1
77.4
57.4
17.9
5.16
206
61.6
24.0
1930
137 100
1050
132
747 133
244
117
3.71
23.4
10.2
0.982
48.3
22.2
6.95
0.907
511 89.2 17.7
398
87.6
9.03
298 88.6
4.07
193
83.6
1.42
1640
610
1120
393
736
259
585
441
198
73.6
1110
480
234
58.2
651
228
122
19.5
377
218
94.2
18.0
174
109
60.8
27.9
r
88.6
57.2
77.5
50.3
68.3
43.2
63.8
62.7
40.6
29.7
95.0
63.0
48.8
27.4
78.0
49.8
39.1
19.1
65.3
51.1
34.8
19.9
51.6
41.1
32.0
22.3
Transcribed Image Text:Table F-1(b) Properties of Wide-Flange Sections (W Shapes) - SI Units (Abridged List) Flange Mass per Web Designation meter Area Depth thickness kg mm² mm W 760 X 314 314 W 760 X 196 196 W 610 X 241 241 W 610 X 140 140 W 460 X 177 177 W 460 x 106 106 W 410 X 149 W 410 X 114 W 410 X 85 W 410 x 46.1 W 360 x 179 W 360 x 122 W 360 x 79 W 360 x 39 W 310 X 129 W 310 x 74 W 310 X 52 W 310 X 21 W 250 x 89 W 250 x 67 W 250 X 44.8 W 250 x 17.9 149 114 85.0 46.1 179 122 129 74.0 52.0 21.0 40,100 785 25,100 770 89.0 67.0 44.8 17.9 30,800 635 17,900 617 22,600 483 13,400 470 19,000 432 14,600 419 10,800 417 5890 404 79.0 39.0 4960 22,800 368 15,500 363 10,100 353 353 16,500 318 9420 310 6650 318 2680 302 11,400 259 8580 257 5700 267 2280 251 W 200 X 52 6650 206 W 200 X 41.7 52.0 41.7 31.3 5320 205 W 200 x 31.3 3970 210 W 200 x 22.5 22.5 2860 206 Note: Axes 1-1 and 2-2 are principal centroidal axes. mm 19.7 15.6 17.9 13.1 16 17 66 16.6 12.6 14.9 11.6 10.9 6.99 15.0 13.0 9.40 6.48 13.1 10.7 8.89 7.62 4.83 Width Thickness I mm 384 267 330 230 287 194 307 9.40 205 7.62 167 5.08 101 264 262 181 140 mm 33.5 25.4 7.87 204 7.24 166 6.35 134 6.22 102 31.0 22.2 26.9 20.6 373 23.9 257 21.7 205 16.8 128 10.7 25.0 19.3 18.2 11.2 20.6 16.3 13.2 5.72 257 17.3 204 15.7 148 13.0 101 5.33 12.6 11.8 10.2 Axis 1-1 S x 105 mm² x 10³ mm³ 8.00 4290 2400 2150 1120 912 487 620 462 316 156 574 367 225 102 308 163 119 36.9 142 103 70.8 22.4 52.9 40.8 31.3 20.0 10,900 6230 6780 3640 3790 2080 2870 2200 1510 773 r mm 328 310 264 251 201 191 180 178 171 163 3110 158 2020 154 1270 150 578 144 1090 112 805 110 531 111 179 Axis 2-2 I S × 105 mm² × 10³ mm³ mm 99.1 315 81.6 184 45.4 105 25.1 77.4 57.4 17.9 5.16 206 61.6 24.0 1930 137 100 1050 132 747 133 244 117 3.71 23.4 10.2 0.982 48.3 22.2 6.95 0.907 511 89.2 17.7 398 87.6 9.03 298 88.6 4.07 193 83.6 1.42 1640 610 1120 393 736 259 585 441 198 73.6 1110 480 234 58.2 651 228 122 19.5 377 218 94.2 18.0 174 109 60.8 27.9 r 88.6 57.2 77.5 50.3 68.3 43.2 63.8 62.7 40.6 29.7 95.0 63.0 48.8 27.4 78.0 49.8 39.1 19.1 65.3 51.1 34.8 19.9 51.6 41.1 32.0 22.3
Expert Solution
steps

Step by step

Solved in 4 steps with 6 images

Blurred answer
Knowledge Booster
Design of Beams and Shafts
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY