A passenger is standing on a scale in an elevator. The building has a height of 500 feet, the passenger has a mass of 80 kg, and the scale has a mass of 7 kg. The scale sits on the floor of the elevator. (It is an Otis elevator, so we will label it as "O" so as not to confuse its forces with those caused by the earth.) You may take g = 10 N/kg. For doing this problem it might be useful to start by drawing free-body diagrams for the passenger and the scale. Consider the vertical forces acting on the passenger and the scale WE→P: The force of the earth pulling down on the passenger (weight). WE→S: The force of the earth pulling down on the scale (weight). NP→S: The force of the passenger pushing down on the scale (normal). NS→P: The force of the scale pushing up on the passenger (normal). NO→S: The force of the elevator pushing up on the scale (normal). NO→P: The force of the elevator pushing up on the passenger (normal) a) While it is accelerating downward, which of the forces in your diagrams have the same magnitude? For each equality you claim, explain what foothold principle makes you think that they are equal.  b) While it is accelerating downward, what does the scale read (in newtons)?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

A passenger is standing on a scale in an elevator. The building has a height of 500 feet, the passenger has a mass of 80 kg, and the scale has a mass of 7 kg. The scale sits on the floor of the elevator. (It is an Otis elevator, so we will label it as "O" so as not to confuse its forces with those caused by the earth.) You may take g = 10 N/kg. For doing this problem it might be useful to start by drawing free-body diagrams for the passenger and the scale.

Consider the vertical forces acting on the passenger and the scale

  • WE→P: The force of the earth pulling down on the passenger (weight).
  • WE→S: The force of the earth pulling down on the scale (weight).
  • NP→S: The force of the passenger pushing down on the scale (normal).
  • NS→P: The force of the scale pushing up on the passenger (normal).
  • NO→S: The force of the elevator pushing up on the scale (normal).
  • NO→P: The force of the elevator pushing up on the passenger (normal)

a) While it is accelerating downward, which of the forces in your diagrams have the same magnitude? For each equality you claim, explain what foothold principle makes you think that they are equal. 

b) While it is accelerating downward, what does the scale read (in newtons)? 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY