A railroad tie (or sleeper) is subjected to two rail loads, each of magnitude P = 175 kN, acting as shown in the figure. The reaction q of the ballast is assumed to be uniformly distributed over the length of the tie, which has cross-sectional dimensions b = 300 mm andh = 250 mm . Calculate the maximum bending stress omax in the tie due to the loads P, assuming the distance L = 1500 mm and the overhang length a = 500 mm.

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
A railroad tie (or sleeper) is subjected to two rail loads, each of magnitude P = 175 kN, acting as
shown in the figure. The reaction q of the ballast is assumed to be uniformly distributed over the
length of the tie, which has cross-sectional dimensions b = 300 mm and h = 250 mm.
%3D
Calculate the maximum bending stress omax in the tie due to the loads P, assuming the distance L
= 1500 mm and the overhang length a = 500 mm.
L
h
Transcribed Image Text:A railroad tie (or sleeper) is subjected to two rail loads, each of magnitude P = 175 kN, acting as shown in the figure. The reaction q of the ballast is assumed to be uniformly distributed over the length of the tie, which has cross-sectional dimensions b = 300 mm and h = 250 mm. %3D Calculate the maximum bending stress omax in the tie due to the loads P, assuming the distance L = 1500 mm and the overhang length a = 500 mm. L h
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 2 images

Blurred answer
Knowledge Booster
Methods to Determine Vertical Stress
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning