A cylindrical brass rod with a minimum tensile strength of 450 MPa, a ductility of at least 13% EL (elongation), and a final diameter of 12.7mm is required. You have in your inventory some 19.0mm diameter brass stock that has been cold worked to 35%. Assuming that the cross section of the rod is still circular after being cold worked, and that brass experiences cracking at 65% CW, describe the necessary working steps in order to achieve the final product. Take the expression for % cold work to be = (Ao - Af)/ Ao x 100%, where Ao and Af are the original and final circular cross-sectional areas of the rod.
A cylindrical brass rod with a minimum tensile strength of 450 MPa, a ductility of at least 13% EL (elongation), and a final diameter of 12.7mm is required. You have in your inventory some 19.0mm diameter brass stock that has been cold worked to 35%. Assuming that the cross section of the rod is still circular after being cold worked, and that brass experiences cracking at 65% CW, describe the necessary working steps in order to achieve the final product. Take the expression for % cold work to be = (Ao - Af)/ Ao x 100%, where Ao and Af are the original and final circular cross-sectional areas of the rod.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
100%
A cylindrical brass rod with a minimum tensile strength of 450 MPa, a ductility of at least 13% EL (elongation), and a final diameter of 12.7mm is required. You have in your inventory some 19.0mm diameter brass stock that has been cold worked to 35%. Assuming that the cross section of the rod is still circular after being cold worked, and that brass experiences cracking at 65% CW, describe the necessary working steps in order to achieve the final product. Take the expression for % cold work to be = (Ao - Af)/ Ao x 100%, where Ao and Af are the original and final circular cross-sectional areas of the rod.

Transcribed Image Text:140
70
900
1040 Steel
60
120
800
50
700
100
40
Brass
Brass
30
500
20
400
Сорper
1040 Steel
300
10
40
Copper
200
30 40
10
30 40 50 60 70
10
20
50
60
70
20
Percent cold work
Percent cold work
()
Figures for Q2 (b) & (c) – Tensile Strength & Ductility against Percent of Cold Work for the Brass
Rod in Question. Adapted from Figure 7.19, pg 192, "An Introduction to Materials Science &
Engineering", 7th Ed, by W. D. Callister Jr., 2006
Tensile strength (MPa)
T
Tensile strength (ksi)
Ductility (%EL)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY